• Title/Summary/Keyword: metabolite M1

Search Result 284, Processing Time 0.025 seconds

Measurement and Assessment of Absolute Quantification from in Vitro Canine Brain Metabolites Using 500 MHz Proton Nuclear Magnetic Resonance Spectroscopy: Preliminary Results (개의 뇌 조직로부터 추출한 대사물질의 절대농도 측정 및 평가: 500 MHz 고자장 핵자기공명분광법을 이용한 예비연구결과)

  • Woo, Dong-Cheol;Bang, Eun-Jung;Choi, Chi-Bong;Lee, Sung-Ho;Kim, Sang-Soo;Rhim, Hyang-Shuk;Kim, Hwi-Yool;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.

  • PDF

Effect of Bisphenol A Administration on Reproductive Characteristic and Blood Metabolite in Mice (BPA의 투여가 생쥐의 번식특성과 혈액성분에 미치는 영향)

  • Park, D.H.;Jang, H.Y.;Park, C.K.;Cheong, H.T.;Kim, C.1.;Yang, B.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.957-966
    • /
    • 2004
  • The objective of this study was to investigate the effects of BPA on reproductive characteristic and blood hematological and chemical values in mice. The male mice were intraperitoneally injected BPA in native control(no treatment), positive control(corn oil, 3$m\ell$/kg B.W), 0.05, 0.5 and 5.0mg BPA/kg B.W and female mice were injected BPA in control(corn oil, 3$m\ell$/kg B.W), 0.05, 0.5 and 5.0mg BPA/kg B.W with 5 times at 3 days interval for 14 days. The administration of BPA in male mice didn't affect the body and reproductive organ weight such as testis, epididymis, vesicular gland and coagulating gland. We found that the 5.0mg BPA group was significantly reduced the sperm concentration and increased the sperm abnormality compared to native, positive control and 0.05mg BPA groups(P<0.05), but any other effects were not found in sperm viability and motility in BPA treatment groups. The RBC, HB, HT, MCV, MCH, MCHC, albumin, BUN and total protein of blood hematological and chemical values in male were not different in all experimental groups(P>0.05). However, the value of WBC was slightly lower in BPA treatment groups than that of control groups and PLT was slightly higher in BPA groups than that of control groups, but not significantly defference among the experimental groups(P>0.05). In female mice, the effects of BPA on body weight didn’t affect in all experimental groups, but ovary weights in 0.5 and 5.0mg BPA groups were significantly increased compared to those in control and 0.05mg BPA group(P<0.05). The uterine weight in BPA groups was slightly higher than that of control group, but not significantly different in all experimental groups(P>0.05). The RBC, Hb, HT, MCV, MCH, MCHC, albumin and total protein of blood hematological and chemical values in female were not different in all experimental groups(P>0.05). The values of WBC and PLT in BPA groups were slightly higher than that of control, but not significantly different among the experimental groups. The concentration of BUN was the higher in BPA groups than that of control group. The histological evaluation of testis, ovary and uterus were not different in all experimental groups.

Mass Proliferation of Hibiscus hamabo Adventitious Root in an Air-lift Bioreactor, and the Antioxidant and Whitening Activity of the Extract (생물반응기를 이용한 황근 부정근의 대량증식과 추출물의 항산화 및 미백 활성 평가)

  • Lee, Jong-Du;Hyun, Ho Bong;Hyeon, Hyejin;Jang, Eunbi;Ko, Min-Hee;Yoon, Weon-Jong;Ham, Young Min;Jung, Yong-Hwan;Choi, Hwon;O, Eu Gene;Oh, Daeju
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • Hibiscus hamabo Sieb. et Zucc. (yellow hibiscus) is a deciduous semi-shrub plant and mainly growing in Jeju Island. This is known the unique wild hibiscus genus and classified as an 2nd grade of endangered plant for Korean Red List. In previous studies, properties of germination, ecological, genetical and salt resistance have been reported. In this study, we investigated mass-proliferated adventitious root using bioreactor, antioxidant and whitening effects to conduct functional ingredients. Yellow hibiscus were collected from Gujwa, Jeju by prior permission and they were introduced by explant type and various medium composition after surface sterilization. As a result, seed response rates were evaluated at range of 51.17~51.83%, in terms of comprehensive efficiency of shoot and root formation. In the case of adventitious root propagation condition was confirmed in half strength Murashige and Skoog medium salts, 30 mg/L sucrose, and 2 mg/L indole-3-butyric acid for 8 weeks in 5,000 mL bioreactor. We also compared between relationship with biomass and secondary metabolites accumulation by total phenolics content, the flavonoid content, DPPH free radical scavenging activity and melanin content. The results indicated that adventitious root mass proliferation, antioxidant and whitening effect could develop value of the high-quality cosmeceutical ingredient and further metabolite studies.

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages (고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석)

  • Yang, Chul-Su;Ko, Sung-Ryong;Cho, Byung-Goo;Lee, Ji-Yeon;Kim, Ki-Hye;Shin, Dong-Min;Yuk, Jae-Min;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.