• 제목/요약/키워드: metabolic stress

Search Result 462, Processing Time 0.024 seconds

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.

Early dropout predictive factors in obesity treatment

  • Michelini, Ilaria;Falchi, Anna Giulia;Muggia, Chiara;Grecchi, Ilaria;Montagna, Elisabetta;De Silvestri, Annalisa;Tinelli, Carmine
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.94-102
    • /
    • 2014
  • Diet attrition and failure of long term treatment are very frequent in obese patients. This study aimed to identify pre-treatment variables determining dropout and to customise the characteristics of those most likely to abandon the program before treatment, thus making it possible to modify the therapy to increase compliance. A total of 146 outpatients were consecutively enrolled; 73 patients followed a prescriptive diet while 73 followed a novel brief group Cognitive Behavioural Treatment (CBT) in addition to prescriptive diet. The two interventions lasted for six months. Anthropometric, demographic, psychological parameters and feeding behaviour were assessed, the last two with the Italian instrument VCAO Ansisa; than, a semi-structured interview was performed on motivation to lose weight. To identify the baseline dropout risk factors among these parameters, univariate and multivariate logistic models were used. Comparison of the results in the two different treatments showed a higher attrition rate in CBT group, despite no statistically significant difference between the two treatment arms (P = 0.127). Dropout patients did not differ significantly from those who did not dropout with regards to sex, age, Body Mass Index (BMI), history of cycling, education, work and marriage. Regardless of weight loss, the most important factor that determines the dropout appears to be a high level of stress revealed by General Health Questionnaire-28 items (GHQ-28) score within VCAO test. The identification of hindering factors during the assessment is fundamental to reduce the dropout risk. For subjects at risk, it would be useful to dedicate a stress management program before beginning a dietary restriction.

The Effects of Virgin Coconut Oil Supplementation and Complex Exercise on Body Composition, Oxidative Stress and Blood Pressure in the Middle-Aged Women with Metabolic Syndrome (대사증후군 중년 여성들의 코코넛 오일 섭취와 복합운동이 신체조성, 산화스트레스 및 혈압에 미치는 영향)

  • Kim, Nam-Ik
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.571-581
    • /
    • 2017
  • The purpose of this study was to investigate the effects of virgin coconut oil supplementation and complex exercise on body composition, oxidative stress and blood pressure in the middle-aged women with metabolic syndrome. As a result, weight and body fat in coconut oil+complex exercise and coconut oil group are significantly decreased after the program. BMI and WHR in coconut oil+complex exercise group are significantly decreased after than before the program. MDA in coconut oil+complex exercise and coconut oil group is significantly decreased after the program. SOD in coconut oil+complex exercise and coconut oil group is significantly increased after the program. Systolic blood pressure in coconut oil+complex exercise and coconut oil group is significantly decreased after than before the program. Diastolic blood pressure in coconut oil+complex exercise group is significantly decreased after than before the program.

Effects of Dietary Fiber on Water Balance, Blood Acid-Base Balance, Body Temperature, and Metabolic Rate of Adult Roosters under Heat Stress (사료 섬유질이 고온 스트레스를 받는 수탉 성계의 수분 출납, 혈액의 산-염기 평형, 체온 및 대사율에 미치는 영향)

  • 이지훈;이봉덕;이수기;유동조;현화진
    • Korean Journal of Poultry Science
    • /
    • v.22 no.3
    • /
    • pp.133-144
    • /
    • 1995
  • One metabolism trial(Experiment I) and another respiration trial(Experiment II) were conducted to investigate the effects of dietary fiber supplementation(20% wheat bran) on the water balance, blood acid-base balance, body temperature, and metabolic rate of heat-stressed adult roosters. In Experiment I, twenty 20-wk-old SCWL roosters(BW 1.6 kg) were randomly alloted to 4 treatments with 5 birds per treatment and one per replicate. The 4 treatments were consisted of two temperature(21~22˚C vs. 34~35˚C) and two dietary fiber treatment(0% and 20% wheat bran), making Experiment I a 2x2 factorial. After 4 d of preliminary period, birds we subjected to 3-d collection period. Sixteen 20-wk-old SCWL roosters(BW 1.6 kg) were employed Experiment H, with two temperature(21~22˚C vs. 34~35˚C) and two wheat bran levels(0% and 20%). Brids were housed in individual metabolism cages under normal temperature(21~22˚C), at fed one of the experimental diet. After 4 d of preliminary period, a respiration trial with open-circuit gravimetric respiratory apparatus was carried out for each bird for 6 h, one by one, normal(20~21˚C) and hot(34~35˚C) temperatures. The ANOVA test and comparisons among treatment means were done at 5% probability level for both experiments. Results obtained from Experiment I and, II were summarized as follows, 1.The amounts of DM intake and excretion were significantly(P<.05) decreased by heat stress. The DM intake was not affected by the addition of 20% wheat bran, however, the amount of DM excretion was significantly increased by the high fiber diet. Thus, the DM metabolizability decreased significantly by the addition of 20% wheat bran. 2. The heat-stressed roosters increased the water intake and excreta moisture content significantly. Although not significant, the water intake tended to increase in roosters fed the 20% wheat bran diet. 3. The amounts of total water input and evaporative water loss were increased significantly by heat stress, and the addition of 20% wheat bran did not exert any influence on the total water input and evaporative water loss. However, roosters fed the 20% wheat bran diet increased the excreta water output significantly. 4. Neither the heat stress nor the dietary fiber did affect the blood pH, pCO2, and HCO$_3$- significantly. 5. The body temperature increased significantly by the heat stress. However, the high fiber deit failed to decrease the body temperature. 6. The heat-stressed roosters decreased the 02 consumption and C0$_2$ production, and increased the evaporative water loss significantly. However, the high fiber diet did not exert any infulence in this regard. It appears that the beneficial effect, if any, of high fibrous diet during heat stress episode may be due to the increased heat loss through the enhanced excreta water.

  • PDF

Association of Polymorphisms in Stress-Related TNFα and NPY Genes with the Metabolic Syndrome in Han and Hui Ethnic Groups

  • Bu, De-Yun;Ji, Wen-Wu;Bai, Dan;Zhou, Jian;Li, Hai-Xia;Yang, Hui-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5895-5900
    • /
    • 2014
  • Background: Metabolic syndrome (MS) is a cluster of complicated disorders caused by the interactive influencing factors of heredity and environment, which predisposes to many cnacers. Results from epidemic research indicate that stress is tightly related to the pathogenesis of MS and neoplasia. This paper aims to investigate the association between psychological stress and MS with respect to the tumor necrosis factor alpha (TNF${\alpha}$) and neuropeptide Y (NPY) genes in the Han and Hui ethnic groups. Methods: All subjects for this case-control study matched strict enrollment criteria (nationality, gender and age) and lived in the city of Wu Zhong of Ningxia Province in China. The enrolled group contained 102 matched pairs of Hui ethnic individuals and 98 matched pairs of Han ethnic individuals. Enrolled subjects completed the general Symptom Checklist-90 (SCL-90). The TNF${\alpha}$-308G/A variant and NPYrs16147 polymorphism were detected in case (81 males, 119 females) and control (81 males, 119 females) groups by polymerase chain reaction (PCR) amplification. Results: Nine factors of the SCL-90 were found to be statistically different (p<0.05) between case and control groups. The homozygous mutant genotype (AA) and the mutant allele (A) of the TNF${\alpha}$-308G/A gene were less frequently observed in the control population compared to the case group. The odds ratio (95% confidence interval) in "Allele" for MS was 2.28 (1.47-3.53), p=0.0001, while "OR" was 1.11 (0.83-1.47), p=0.15, for the NPYrs16147 gene polymorphism. Conclusions: Psychological stress has been positively associated with MS. A previous study from our group suggested there were differences in the level of psychological stress between Hui and Han ethnic groups. Furthermore, we found that the stress-related TNF${\alpha}$ gene was associated with MS for both Han and Hui ethnic groups. In contrast, NPY may be a possible contributor to MS and associated cancer for the Han ethnic group.

Changes of Blood $Mg^{2+}$ and $K^+$ after Starvation during Molting in Laying Hens (환우(換羽, molting)에 의한 절식 후 산란계의 혈액 $Mg^{2+}$$K^+$ 변동)

  • Go, Hyeon-Kyu;Lee, Sei-Jin;Cho, In-Gook;Lee, Mun-Young;Park, Hye-Min;Mun, A-Reum;Kim, Jeong-Gon;Kim, Gi-Beum;Kim, Jin-Shang;Kang, Hyung-Sub;Kim, Shang-Jin
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.581-585
    • /
    • 2011
  • Either the fasting during natural molting or the starvation in induced molting would be a severe metabolic stress to laying hens. The metabolic stress during starvation and subsequent refeeding syndrome could lead to unbalance of mineral homeostasis, including $Mg^{2+}$, $K^+$ and P required by ATP synthesis. Since $Mg^{2+}$ is a fundamental ion for normal metabolic processes and stress may not only increase in demands of $Mg^{2+}$ but also produce consequence of $Mg^{2+}$ deficiency, we investigated the changes of blood ionized and total ions related to starvation during molting in laying hens. We founded the significant decrease in blood $Mg^{2+}$ and $K^+$ accompanied by the changes of biochemical parameters relating to increased metabolic stress after molting. These results suggested that appropriate $Mg^{2+}$ and $K^+$ supplements to laying hens could have beneficial effects during molting and subsequent refeeding that could produce a severe hypomagnesemia and hypokalcemia.

A Study on Optimization of Thermophysiological Indices for Harbor Workers in Summer: Improvement of MENEX Model's Input Data Considering the Work Environment (하계 항만열환경지수 최적화 방안연구: 항만작업환경을 반영한 MENEX모델의 입력변수 개선)

  • Yun, Jinah;Hwang, Mi-Kyoung;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.951-961
    • /
    • 2016
  • To prevent increasing instances of heat-related illnesses due to heat waves generated by climate change, a customized thermal environment index should be developed for outdoor workers. In this study, we conducted sensitivity analysis of the Masan harbor during a heat wave period (August 9th to 15th, 2013) using the MENEX model with metabolic rate and clothing-insulation data, in order to obtain realistic information about the thermal environment. This study shows that accurate input data are essential to gather information for thermophysiological indices (PST, DhR, and OhR). PST is sensitive to clothing insulation as a function of clothing. OhR is more sensitive to clothing insulation during the day and to the metabolic rate at night. From these results, it appears that when exposed to high-temperature thermal environments in summer, wearing highly insulated clothing and getting enough rest (to lower the metabolic rate) can aid in preventing heat-related illnesses. Moreover, in the case of high-intensity harbor work, quantification of allowed working time (OhR) during heat waves is significant for human health sciences.

Metabolic Differentiation of Saccharomyces cerevisiae by Ketoconazole Treatment

  • Keum, Young Soo;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.109-112
    • /
    • 2013
  • Azole fungicides are one of the most wide-spread antifungal compounds in agriculture and pharmaceutical applications. Their major mode of action is the inhibition of ergosterol biosynthesis, giving depletion of ergosterol, precursors and abnormal steroids. However, metabolic consequences of such inhibition, other than steroidal metabolitesare not well established. Comprehensive metabolic profiles of Saccharomyces cerevisiae has been presented in this study. Wild type yeast was treated either with glucose as control or azole fungicide (ketoconazole). Both polar metabolites and lipids were analyzed with gas chromatography-mass spectrometry. Approximately over 180 metabolites were characterized, among which 18 of them were accumulated or depleted by fungicide treatment. Steroid profile gives the most prominent differences, including the accumulation of lanosterol and the depletion of zymosterol and ergosterol. However, the polar metabolite profile was also highly different in pesticide treatment. The concentration of proline and its precursors, glutamate and ornithine were markedly reduced by ketoconazole. Lysine and glycine level was also decreased while the concentrations of serine and homoserine were increased. The overall metabolic profile indicates that azole fungicide treatment induces the depletion of many polar metabolites, which are important in stress response.

Relationship between Personality and Biological Reactivity to Stress: A Review

  • Soliemanifar, Omid;Soleymanifar, Arman;Afrisham, Reza
    • Psychiatry investigation
    • /
    • v.15 no.12
    • /
    • pp.1100-1114
    • /
    • 2018
  • Objective Personality traits can be the basis for individual differences in the biological response of stress. To date, many psychobiological studies have been conducted to clarify the relationship between personality and biological reactivity to stress. This review summarizes the most important findings in this area of research. Results Key findings related to the relationship between personality factors and stress-sensitive biological systems in four research models have been summarized; model of psychosocial characteristics, model based on Rumination and Emotional Inhibition, Eysenck's biopsychological model, and Five-Factor Approach of Personality. Conclusion According to the results of this review, it can be concluded that personality typology of individuals influenced their biological reactivity to stressful events. Understanding the biological basis of personality can help to better understand vulnerability to stress. Future research can be continuing based on framework of the four models.

Effects of dry period length on milk production and physiological responses of heat-stressed dairy cows during the transition period

  • Dong-Hyun Lim;Da Jin Sol Jung;Kwang-Seok Ki;Dong-Hyeon Kim;Manhye Han;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.197-208
    • /
    • 2023
  • The objective of this study was to investigate the effects of a traditional dry period (60 d) versus a no dry period (0 d) on the milk production, physiological response, and metabolic status of dairy cows exposed to heat stress during the transition period. Holstein dairy cows (n = 15) with similar expected calving dates were randomly assigned to two different dry period lengths: (1) no dry period (n = 7) and (2) a traditional dry period of 60 days (n = 8). All cows were studied from 8 weeks before expected calving to 10 weeks after calving and experienced heat stress during the transition period. The results showed that cows with no dry period decreased their milk yield in subsequent lactation, but compensated for the loss of milk yield accounted for by additional milk yield before calving. The energy balance at postpartum was improved in cows with no dry period compared to cows with a traditional dry period. There were no significant differences in the physiological response and blood metabolites at postpartum between the dry period lengths of dairy cows exposed to heat stress during the transition period. Taken together, our results showed that omitting the dry period improved the milk production and metabolic status of dairy cows exposed to heat stress during the transition period.