• Title/Summary/Keyword: metabolic pathways

Search Result 439, Processing Time 0.021 seconds

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

Alteration of the Metabolome Profile in Endothelial Cells by Overexpression of miR-143/145

  • Wang, Wenshuo;Yang, Ye;Wang, Yiqing;Pang, Liewen;Huang, Jiechun;Tao, Hongyue;Sun, Xiaotian;Liu, Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.572-578
    • /
    • 2016
  • Communication between endothelial cells (ECs) and smooth muscle cells (SMCs) via miR-143/145 clusters is vital to vascular stability. Previous research demonstrates that miR-143/145 released from ECs can regulate SMC proliferation and migration. In addition, a recent study has found that SMCs also have the capability of manipulating EC function via miR-143/145. In the present study, we artificially increased the expression of miR-143/145 in ECs, to mimic a similar change caused by miR-143/145 released by SMCs, and applied untargeted metabolomics analysis, aimed at investigating the consequential effect of miR-143/145 overexpression. Our results showed that miR-143/145 overexpression alters the levels of metabolites involved in energy production, DNA methylation, and oxidative stress. These changed metabolites indicate that metabolic pathways, such as the SAM cycle and TCA cycle, exhibit significant differences from the norm with miR-143/145 overexpression.

Screening and Development of DNA Aptamers Specific to Several Oral Pathogens

  • Park, Jung-Pyo;Shin, Hye Joo;Park, Suk-Gyun;Oh, Hee-Kyun;Choi, Choong-Ho;Park, Hong-Ju;Kook, Min-Suk;Ohk, Seung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • Aptamers are composed of single-stranded oilgonucleotides that can selectively bind desired molecules. It has been reported that RNA or DNA could act as not only a genetic messenger but also a catalyst in metabolic pathways. RNA aptamers (average sizes 40-50 bp) are smaller than antibodies and have strong binding capacities to target molecules, similar to antigenantibody interactions. Once an aptamer was selected, it can be readily produced in large quantities at low cost. The objectives of this study are to screen and develop aptamers specific to oral pathogens such as Porphyromonas gingivalis, Treponema denticola, and Streptococcus mutans. The bacterial cell pellet was fixed with formaldehyde as a target molecule for the screening of aptamers. The SELEX method was used for the screening of aptamers and a modified western blot analysis was used to verify their specificities. Through SELEX, 40 kinds of aptamers were selected and the specificity of the aptamers to the bacterial cells was confirmed by modified western blot analysis. Through the SELEX method, 40 aptamers that specifically bind to oral pathogens were screened and isolated. The aptamers showed possibility as effective candidates for the detection agents of oral infections.

Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

  • Mukherjee, Avinaba;Sadhukhan, Gobinda Chandra
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the 'apicoplast', which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle's function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.

Effect of OQ21 and Melatonin on Lipopolysaccharide-Induced Oxidative Stress in Rat Brain (흰쥐 뇌에서의 Lipopolysaccharide-유도 산화적 스트레스에 대한 OQ21과 Melatonin의 작용)

  • Bae Mee Kyung;Choi Shinkyu;Ko Moon-Jeong;Ha Hun-Joo;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • Lipopolysaccharide (LPS) induces synthesis of several inflammatory cytokines and nitric oxide (NO). NO in brain is involved not only in the regulation of important metabolic pathways via intracellular cyclic GMP-dependent path­ways, but also in neurotoxic damage by reacting with superoxide ion leading to form peroxynitrite radical. Oxidative stress has suggested to be related to the inhibition of NO synthase/cyclic GMP pathway. OQ21 is a new fluorinated quinone compound that is recently known to have inhibitory effects on both NO synthase (NOS) and guanylyl cyclase (GC). In this study, we examined effects of OQ21, other known NOS or GC inhibitors, or an antioxidant, melatonin, on the oxidative stress produced by LPS in rat brain. Oxidative stress was observed by using the 2',7'-dichlorofluorescin diacetate to measure intra-cellular reactive oxygen species (ROS) production and by measuring the formation of thiobarbituric acid reactive substances to measure lipid peroxidation. LPS induced significant increase in both ROS produdction and lipid peroxidation in all brain regions tested (striatum, hippocampus and cortex), which were dissected 6hr after intraperitoneal administration of LPS to rats. Direct striatal injection of two NOS inhibitors, N-nitro-L-arginine methyl ester and diphenyleneiodonium, or a GC inhibitor, IH-[1,2,4]oxadiazolo[4,3-a]quinoxaline-l-one, produced no significant ROS increase. However, OQ21 enhanced ROS formation in striatal tissues from LPS-treated rats. Melatonin decreased LPS-induced ROS formation and decreased ROS formation increased by OQ21 in striatum of LPS-treated rats.

A fMRI study on the cerebral activity induced by Electro-acupuncture on Sp9(Yinlingquan) (음릉천(陰陵泉)(Sp9)의 전침자극(電鍼刺戟)이 functional MRI상 뇌활성(腦活性) 변화(變化)에 미치는 영향(影響))

  • Kim, Jeong-ho;Lee, Hyun;Lim, Yun-kyoung;Hong, Kwon-eui;Lee, Byung-ryul;Kim, Yeon-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.114-133
    • /
    • 2003
  • Objective : The meridian theory in oriental medicine explains that Sp9(Yinlingquan) has been considered very important for gynecological disorders, spleen and stomach disorders, and water metabolic disorders. Functional MRI is the best method of showing the evidences of the effect of the Electro-acupuncture treatment through scientific methods. On this supposition, Electro-acupuncture stimulation on Sp9(Yinlingquan) was carried out on six healthy volunteers, using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). Methods : Electro-acupuncture stimulation on Sp9(Yinlingquan), the experiment was carried out on six healthy volunteers, using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right Sp9(Yinlingquan), 2Hz of electric stimulation was given for 30 seconds, repeated five times, with 30 seconds' intervals. The Image analysis including motion correction, talairach transformation, and smoothing was done using SPM99. Results : The electro-acupuncture stimulation on Sp9(Yinlingquan) activates Brodmann Area 13, 19, 22, 39, 40, 47 which may be the central pathways of the electro-acupuncture stimulation on Sp9(Yinlingquan). We also hypothesize that those brain areas may be directly or indirectly related with the mechanism of the effect of electro-acupuncture stimulation on Sp9(Yinlingquan).

  • PDF

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Physical Activity and its Relation to Cancer Risk: Updating the Evidence

  • Kruk, Joanna;Czerniak, Urszula
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.3993-4003
    • /
    • 2013
  • Scientific evidence for the primary prevention of cancer caused by physical activity of regular moderate-intensity or greater is rapidly accumulating in this field. About 300 epidemiologic studies on the association between physical activity and cancer risk have been conducted worldwide. The objectives of this paper were three-fold: (i) to describe briefly the components of physical activity and its quantification; (ii) to summarize the most important conclusions available from comprehensive reports, and reviews of the epidemiologic individual and intervention studies on a role physical activity in cancer prevention; (iii) to present proposed biological mechanisms accounting for effects of activity on cancer risk. The evidence of causal linked physical activity and cancer risk is found to be strong for colon cancer - convincing; weaker for postmenopausal breast and endometrium cancers - probable; and limited suggestive for premenopausal breast, lung, prostate, ovary, gastric and pancreatic cancers. The average risk reductions were reported to be 20-30%. The protective effects of physical activity on cancer risk are hypothesized to be through multiple interrelated pathways: decrease in adiposity, decrease in sexual and metabolic hormones, changes in biomarkers and insulin resistance, improvement of immune function, and reduction of inflammation. As there are several gaps in the literature for associations between activity and cancer risk, additional studies are needed. Future research should include studies dealing with limitations in precise estimates of physical activity and of a lack of consensus on what defines sedentary behavior of individuals and those linked with the proposed biomarkers to cancer risk and controlled exercise intervention trials.

Effects of Amomum cadamomum Linne Extract on TNF-α-induced Inflammation and Insulin Resistance in 3T3-L1 Adipocytes

  • Kang, Kyung-Hwa;Song, Choon-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • Amomum cadamomum Linne (ACL) has long been utilized against the inhibited qi movement related diseases such as dyspepsia, acute gastroenteritis, vomiting and diarrhea in Korean medicine. We speculated that ACL could improve the metabolic disorders such as obesity and type 2 diabetes through removing the phlegm-dampness and promoting the qi movement or stagnation. This study was designed to investigate effects and molecular mechanisms of ACL extract on the improvement of adipocyte dysfunction induced by TNF-α in 3T3-L1 adipocytes. Potential roles of ACL extract in the lipogenesis, inhibition of inflammatory cytokines and insulin resistance, were investigated in this study. Also, we examined the adipose genes and signaling molecules related to insulin resistance and glucose uptake to elucidate its mechanism. Our data demonstrated that TNF-α significantly incresed the release of lipid droplets and the production of MCP-1 and IL-6 from adipocytes. In gene expression, TNF-α reduced the expression of aP2, PPARγ, C/EBPα, GLUT4, and IRS-1 related to lipogenesis and insulin sesitivity, while TNF-α increased the expression of MCP-1 related to inflammation. In addition, TNF-α down-regulated the PPARγ and IRS-1 protein and up-regulated the IRS-1 Ser307 phosphorylation. These alterations induced by TNF-α were prevented by the treatment of ACL extract. Thus, our results indicate that ACL extract can be used to prevent from the TNF-α-induced adipocyte dysfunction through insulin and PPARγ pathways.