• 제목/요약/키워드: metabolic partitioning

검색결과 13건 처리시간 0.027초

n-6/n-3 지방산 비율이 고지혈증 랫드의 지질대사 분할에 미치는 영향 (Effect of n-6/n-3 fatty acid ratio on metabolic partitioning in hyperlipidemic rats)

  • 이승형;엄경환;박병성
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.643-653
    • /
    • 2018
  • 본 연구는 고지혈증 모델동물 랫드에서 n-6/n-3가 서로 다른 식이를 급여하였을 때 혈액지질의 대사적 분할에 미치는 작용 메카니즘을 생체 모니터링 기법으로 구명하였다. 총 glycerolipids의 간에서 대사된 cholesteryl $^{14}C$-oleate 비율은 n-6/n-3 비율 4:1, 15:1, 30:1, 대조군 순서로 낮았다(p<0.05). 인지질 분비량은 대조군과 비교할 때 n-6/n-3 비율 4:1, 15:1, 30:1 순서로 높았다(p<0.05). 중성지방 분비량은 대조군과 비교할 때 n-6/n-3 비율 4:1, 15:1, 30:1 순서로 특히, 4:1 처리군에서 낮았다(p<0.05). 총 glycerolipid에 대한 인지질의 분할 비율은 n-6/n-3 비율 4:1, 15:1, 30:1, 대조군 순서로 높았다(p<0.05). 간으로부터 중성지방 분할 비율(%)은 대조군 82.25%와 비교할 때 n-6/n-3 비율 4:1, 15:1, 30:1에서 각각 72.99, 75.93, 78.12%로써 n-6/n-3 비율이 증가할수록 높아졌다(p<0.05). 인지질 분할 비율(%)은 대조군 11.04%와 비교할 때 n-6/n-3 비율 4:1, 15:1, 30:1에서 각 25.15, 18.87, 18.15%로써 n-6/n-3 비율이 증가할수록 낮아졌다(p<0.05).

Different Coefficients and Exponents for Metabolic Body Weight in a Model to Estimate Individual Feed Intake for Growing-finishing Pigs

  • Lee, S.A.;Kong, C.;Adeola, O.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권12호
    • /
    • pp.1756-1760
    • /
    • 2016
  • Estimation of feed intake (FI) for individual animals within a pen is needed in situations where more than one animal share a feeder during feeding trials. A partitioning method (PM) was previously published as a model to estimate the individual FI (IFI). Briefly, the IFI of a pig within the pen was calculated by partitioning IFI into IFI for maintenance ($IFI_m$) and IFI for growth. In the PM, $IFI_m$ is determined based on the metabolic body weight (BW), which is calculated using the coefficient of 106 and exponent of 0.75. Two simulation studies were conducted to test the hypothesis that the use of different coefficients and exponents for metabolic BW to calculate $IFI_m$ improves the accuracy of the estimates of IFI for pigs, and that PM is applied to pigs fed in group-housing systems. The accuracy of prediction represented by difference between actual and estimated IFI was compared using PM, ratio (RM), or averaging method (AM). In simulation studies 1 and 2, the PM estimated IFI better than the AM and RM during most of the periods (p<0.05). The use of 0.60 as the exponent and the coefficient of 197 to calculate metabolic BW did not improve the accuracy of the IFI estimates in both simulation studies 1 and 2. The results imply that the use of $197kcal{\times}kg\;BW^{0.60}$ as metabolizable energy for maintenance in PM does not improve the accuracy of IFI estimations compared with the use of $106kcal{\times}kg\;BW^{0.75}$ and that the PM estimates the IFI of pigs with greater accuracy compared with the averaging or ratio methods in group-housing systems.

휘발성 유기용매의 In vitro 대사속도 측정 장치의 개발 (Development of an Apparatus for the Determination of In Vitro Metabolic Rate Constants of Volatile Organic Chemicals)

  • 황인영;이윤
    • Environmental Analysis Health and Toxicology
    • /
    • 제12권3_4호
    • /
    • pp.43-54
    • /
    • 1997
  • Species, doses and routes extrapolation can be sucessfully carried out by using a physiologically-based pharmacokinetic (PBPK) approach. And PBPK approach to assess risk of hazardous chemicals is reasonable whatever the exposure scenarios are happened. Both partitioning coefficients of chemical between tissue and blood and enzymatic metabolic rate constants are key parameters to build up the PBPK model. In this study, we tried to estimate in vitro metabolic rate constants using a special apparatus instead to measure the in vivo constants which are used to PBPK simulation since the in vitro tests are less expensive and more convenient than in vivo tests. For the purpose, we designed and tested the new system to measure continuously the headspace concentration of VOC. The newly designed system is composed with a diffusion chamber which generates gaseous substrate, a reaction vessel with a recirculating pump to establish a closed system, an autbmatic sampler from a gas phase, a gas chromatography to analyze the headspace. In addition, a cold water condenser is attached between the reaction vessel and pump to reduce the content of gaseous moisture which interferes with chemical analysis. To validate the newly developed methodology, in vitro metabolic rate constants of trichloroethylene (TCE) as a prototype VOC were estimated by simulating observed results with an ACSL program. The simulated results are consistent to those estimated by the other research groups. This finding suggests that our newly designed closed system may be a useful apparatus to estimate in vitro metabolic rate constants for VOC.

  • PDF

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

랫드에서 난황의 경구투여가 간 지방산의 산화, 에스터화에 미치는 영향 (Effect of oral administration of egg yolk on oxidation and esterification of hepatic fatty acid in rats)

  • 김창현;엄경환;신종서
    • 한국응용과학기술학회지
    • /
    • 제37권3호
    • /
    • pp.398-408
    • /
    • 2020
  • 본 연구의 목적은 달걀의 섭취가 랫드의 간에서 합성, 분비되는 간 지방산의 산화, 에스터화 사이의 대사적 분할 메커니즘을 구명하는 것이었다. 동물은 4개의 그룹으로 나누어 30일 동안 난황을 경구투여 하였다: 대조군 (CON, control, 생리식염수 1.0 g), T1 (삼겹살 기름 1.0 g), T2 (난황 1.0 g), T3 (삼겹살 기름 1.0 g, 난황 1.0 g을 각각 1주일씩 교체 투여군). 간에서 [14C]-labelled lipid의 축적율은 모든 처리구 가운데 T2가 유의하게 낮았다 (P<0.05). 인지질 분비량은 T2가 기타 처리구에 비해서 유의하게 높았다 (P<0.05). 중성지방 분비량은 T1이 가장 높았으며 CON, T3, T2 순서로 유의하게 높았다 (P<0.05). 총 glycerolipid로부터 인지질의 대사적 분할율은 T2가 가장 높았고 T3, CON, T1 순서로 높았다 (P<0.05). 총 glycerolipid로부터 14CO2 방출은 T2에서 가장 높았으며 CON, T1, T3과 비교할 때 높은 산화율을 보여 주었다 (P<0.05). 간으로부터 glycerolipid의 대사적 분할은 중성지방의 경우 T2가 CON, T1, T3와 비교할 때 감소하였으나 인지질은 T2에서 증가했다 (P<0.05).

Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage

  • Subepang, Sayan;Suzuki, Tomoyuki;Phonbumrung, Thamrongsak;Sommart, Kritapon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.548-555
    • /
    • 2019
  • Objective: The main objective of this study was to evaluate the effect of different feeding levels of a total mixed ration silage-based diet on feed intake, total tract digestion, enteric methane emissions, and energy partitioning in two beef cattle genotypes. Methods: Six mature bulls (three Thai natives, and three Thai natives - Charolais crossbreeds) were assigned in a replicated $3{\times}3$ Latin square design, with cattle breed genotype in separate squares, three periods of 21 days, and three energy feeding above maintenance levels (1.1, 1.5, and 2.0 MEm, where MEm is metabolizable energy requirement for maintenance). Bulls were placed in a metabolic cage equipped with a ventilated head box respiration system to evaluate digestibility, record respiration gases, and determine energy balance. Results: Increasing the feeding level had no significant effect on digestibility but drastically reduced the enteric methane emission rate (p<0.05). Increasing the feeding level also significantly increased the energy retention and utilization efficiency (p<0.01). The Thai native cattle had greater enteric methane emission rate, digestibility, and energy utilization efficiency than the Charolais crossbred cattle (p<0.05). The daily metabolizable energy requirement for maintenance in Thai native cattle ($388kJ/kg\;BW^{0.75}$, where $BW^{0.75}$ is metabolic body weight) was 15% less than that in Charolais crossbred cattle ($444kJ/kg\;BW^{0.75}$). Conclusion: Our results suggested that the greater feeding level in zebu beef cattle fed above maintenance levels resulted in improved energy retention and utilization efficiency because of the reduction in enteric methane energy loss. The results also indicated higher efficiency of metabolisable energy utilization for growth and a lower energy requirement for maintenance in Bos indicus than in Bos taurus.

Manipulation of Tissue Energy Metabolism in Meat-Producing Ruminants - Review -

  • Hocquette, J.F.;Ortigues-Marty, Isabelle;Vermorel, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권5호
    • /
    • pp.720-732
    • /
    • 2001
  • Skeletal muscle is of major economic importance since it is finally converted to meat for consumers. The increase in meat production with low costs of production may be achieved by optimizing muscle growth, whereas a high meat quality requires, among other factors, the optimization of intramuscular glycogen and fat stores. Thus, research in energy metabolism aims at controling muscle metabolism, but also liver and adipose tissue metabolism in order to optimize energy partitioning in favour of muscles. Liver is characterized by high anabolic and catabolic rates. Metabolic enzymes are regulated by nutrients through short-term regulation of their activities and long-term regulation of expression of their genes. Consequences of liver metabolic regulation on energy supply to muscles may affect protein deposition (and hence growth) as well as intramuscular energy stores. Adipose tissues are important body reserves of triglycerides, which result from the balance between lipogenesis and lipolysis. Both processes depend on the feeding level and on the nature of nutrients, which indirectly affect energy delivery to muscles. In muscles, the regulation of rate-limiting nutrient transporters, of metabolic enzyme activities and of ATP production, as well as the interactions between nutrients affect free energy availability for muscle growth and modify muscle metabolic characteristics which determine meat quality. The growth of tissues and organs, the number and the characteristics of muscle fibers depend, for a great part, on early events during the fetal life. They include variations in quantitative and qualitative nutrient supply to the fetus, and hence in maternal nutrition. During the postnatal life, muscle growth and characteristics are affected by the age and the genetic type of the animals, the feeding level and the diet composition. The latter determines the nature of available nutrients and the rate of nutrient delivery to tissues, thereby regulating metabolism. Physical activity at pasture also favours the orientation of muscle metabolism, towards the oxidative type. Consequently, breeding systems may be of a great importance during the postnatal life. Research is now directed towards the determination of individual tissue and organ energy requirements, a better knowledge of nutrient partitioning between and within organs and tissues. The discovery of new molecules (e. g. leptin), of new molecular mechanisms and of more powerful techniques (DNA chips) will help to achieve these objectives. The integration of the different levels of knowledge will finally allow scientists to formulate new types of diets adapted to sustain a production of high quality meat with lower costs of production.

대장균의 UDP-glucose regeneration 시스템을 이용한 이당류 합성에 관한 연구 (Disaccharide Synthesis using E. coli UDP-glucose regeneration system)

  • 오정석
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.474-478
    • /
    • 2008
  • 효율적인 UDP-glucose regeneration system을 구축하기 위해서 재순환 시스템에 관여하는 4가지 효소 (UDP-glucose pyrophosphorylase, UDP-Kinase gene, UDP-galactose 4-epimerase, and $\beta$-1, 4-galactasyltrasnsferase)들을 E. coli AD202에서 발현 시켜 Disaccharide 합성 정도를 보았다. Disaccharide는 0.5 mM IPTG 농도에서 가장 높은 농도를 나타내었다. 대조구와 비교한 결과 LacNAc 농도는 1.34 mM로 10배 정도 정가하였고, lactose 농도는 0.39 mM로 대조구보다 2.6배 증가하였다. 총 disaccharide 농도는 1.73 mM 이며, 대조구 보다 6.5배 높은 생산성을 보였다. 본 논문은 결과는 metabolic flux regeneration으로 disaccharides 합성을 증가시킬 수 있다는 것을 보여주었다.

Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw

  • Kongphitee, Kanokwan;Sommart, Kritapon;Phonbumrung, Thamrongsak;Gunha, Thidarat;Suzuki, Tomoyuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권9호
    • /
    • pp.1431-1441
    • /
    • 2018
  • Objective: This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Methods: Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight (BW) of $98.3{\pm}12.8kg$ were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300, and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. Results: The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p<0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p<0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was $399kJ/kg\;BW^{0.75}$, with an efficiency of metabolizable energy utilization for growth of 0.86. Conclusion: Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

Dynamic of heat production partitioning in rooster by indirect calorimetry

  • Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.75-83
    • /
    • 2023
  • Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.