• 제목/요약/키워드: metabolic inhibitors

검색결과 90건 처리시간 0.028초

Comparison of TNF-Mediated Glucose Catabolism between the TNF-Sensitive and -Resistant Cell Lines

  • Kim, Yeon-Hyang;Park, Bok-Ryun;Cheong, Hee-Sun;Kwon, Oh-Hwan;Kim, Dae-Que;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.140-146
    • /
    • 1999
  • When murine fibrosarcoma L929 cells, a TNF-sensitive cell line, were treated with recombinant human tumor necrosis factor-$\alpha$ (rhTNF-$\alpha$), the activities of glycolytic regulatory enzymes and lactate dehydrogenase increased up to 100-150% compared to the control L929 cells after TNF treatment. By using various metabolic inhibitors and activators, it was found that cAMP-dependent protein kinase is responsible for the increase of activities of the glycolytic enzymes. The activities of glycolytic regulatory enzymes and lactate dehydrogenase of TNF-resistant A549 cells, a human lung carcinoma cell line, did not increase significantly compared to TNF-sensitive L929 cells upon TNF treatment. In contrast, the pyruvate carboxylase activities of A549 cells, but not L929 cells, increased up to 30~40% after TNF treatment. The data suggest that pyruvate carboxylase activity may contribute to the compensation of energy loss mediated by TNF treatment in TNF-resistant A549 cells.

  • PDF

효모의 혼합 배양에 관한 연구 -제1보 혼합배양의 상호작용- (Studies on a Mixed Yeast Culture -Part 1. Interactions in a Mixed Yeast Culture-)

  • 변유량;권태완;유주현
    • 한국식품과학회지
    • /
    • 제9권4호
    • /
    • pp.306-312
    • /
    • 1977
  • 탄화수소 자화성균인 C. tropicalis와 비(非)자화성인 T. cutaneum의 혼합배양에 있어서 두 효모간의 상호작용을 구명하였다. 즉 본균(本菌)인 C. tropicalis는 n-paraffin을 자화하여 증식하면서 유리지방산을 대사산물로 배양액에 축적하는 동시에 자신이 이 지방산에 의해 생육저해를 받는다. 공생균(共生菌)인 T. cutaneum은 본균(本菌)의 대사산물인 유리지방산을 탄소원으로 생육하므로써 생육저해작용을 해소하여 본균(本菌)의 증식 속도와 균체수율을 향상시키는 commensalistic system을 형성하는 것으로 판단되었다.

  • PDF

Putrescine Transport in a Cyanobacterium Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun;Maenpaa, Pirkko;Incharoensakdi, Aran
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.394-399
    • /
    • 2006
  • The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent $K_m$ of $92{\pm}10\;{\mu}M$ and $V_{max}$ of $0.33{\pm}0.05\;nmol/min/mg$ protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.

Characterization of Spermidine Transport System in a Cyanobacterium, Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun;Yodsang, Panutda;Maenpaa, Pirkko;Incharoensakdi, Aran
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.447-454
    • /
    • 2009
  • The transport of spermidine into a cyanobacterium, Synechocystis sp. pec 6803, was characterized by measuring the uptake of $^{14}C$-spermidine. Spermidine transport was shown to be saturable with an apparent affinity constant ($K_m$) value of $67{\mu}M$ and a maximal velocity ($V_{max}$) value of 0.45 nmol/min/mg protein. Spermidine uptake was pH-dependent with the pH optimum being 8.0. The competition experiment showed strong inhibition of spermidine uptake by putrescine and spermine, whereas amino acids were hardly inhibitory. The inhibition kinetics of spermidine transport by putrescine and spermine was found to be noncompetitive with $K_i$ values of 292 and $432{\mu}M$, respectively. The inhibition of spermidine transport by various metabolic inhibitors and ionophores suggests that spermidine uptake is energy-dependent. The diminution of cell growth was observed in cells grown at a high concentration of NaCl. Addition of a low concentration of spermidine at 0.5 mM relieved growth inhibition by salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased spermidine transport with about 30-40% increase at 10 mosmol/kg upshift.

Selective Inhibition of Ammonia Oxidation and Nitrite Oxidation Linked to $N_2O$ Emission with Activated Sludge and Enriched Nitrifiers

  • Ali, Toor Umair;Kim, Minwook;Kim, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.719-723
    • /
    • 2013
  • Nitrification in wastewater treatment emits a significant amount of nitrous oxide ($N_2O$), which is one of the major greenhouse gases. However, the actual mechanism or metabolic pathway is still largely unknown. Selective nitrification inhibitors were used to determine the nitrification steps responsible for $N_2O$ emission with activated sludge and enriched nitrifiers. Allylthiourea (86 ${\mu}M$) completely inhibited ammonia oxidation and $N_2O$ emission both in activated sludge and enriched nitrifiers. Sodium azide (24 ${\mu}M$) selectively inhibited nitrite oxidation and it led to more $N_2O$ emission than the control experiment both in activated sludge and enriched nitrifiers. The inhibition tests showed that $N_2O$ emission was mainly related to the activity of ammonia oxidizers in aerobic condition, and the inhibition of ammonia monooxygenase completely blocked $N_2O$ emission. On the other hand, $N_2O$ emission increased significantly as the nitrogen flux from nitrite to nitrate was blocked by the selective inhibition of nitrite oxidation.

한약재의 Cytochrome P450 결합관련 안전성에 관한 연구 (A Study on the Affinity of Some Medicinal Herbs to Two Cytochrome P450 Subfamilies, CYP3A4 and CYP2D6)

  • 유다영;우홍정;김영철
    • 대한한방내과학회지
    • /
    • 제34권4호
    • /
    • pp.375-383
    • /
    • 2013
  • Objectives : This study was performed to investigate the metabolic site of some medicinal herbs in the liver associated with CYP (Cytochrome P450). Methods : Cytochrome P450 is the major enzymes involved in drug metabolism and bioactivation. CYP3A4 and CYP2D6, the major CYP isoforms in humans, catalyse the major proportion of drugs available on the market. Scintillation proximity assay (SPA) is often used in studies to identify compounds that inhibit CYP3A4 and CYP2D6. 28 herbal extracts and radioisotopes were attached competitively to SPA beads, and followed by measuring the remaining radioisotopes in the medium. Erythromycin and dexamethasone, inhibitors of CYP3A4 and CYP2D6, were used as controls respectively. Results : Most of the 28 herbal extracts showed dose-dependent affinity to the CYP3A4 while some of the herbs showed affinity to the CYP2D6. Conclusions : These results suggest that most of the 28 herbal extracts are metabolized safely in the liver, combined with CYP3A4 and CYP2D6.

Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells

  • Lee, Phil Young;Park, Byoung Chul;Chi, Seung Wook;Bae, Kwang-Hee;Kim, Sunhong;Cho, Sayeon;Kang, Seongman;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.560-565
    • /
    • 2016
  • Granzyme A (GzmA) was first identified as a cytotoxic T lymphocyte protease protein with limited tissue expression. A number of cellular proteins are known to be cleaved by GzmA, and its function is to induce apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates during apoptotic cell death. Here, we demonstrated that histone H4 was cleaved by GzmA during staurosporine-induced cell death; however, in the presence of caspase inhibitors, staurosporine-treated Raji cells underwent necroptosis instead of apoptosis. Furthermore, histone H4 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. These results suggest that histone H4 is a novel substrate for GzmA in staurosporine-induced cells.

Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon;Kim, Young-Mee;Li, Song-Zhe;Lim, Sung-Kil;Lee, Weontae
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.352-357
    • /
    • 2008
  • Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

전염성 췌장 괴저 바이러스 감염에 따른 CHSE 세포의 칼슘 반응 (Calcium Response of CHSE Cells Following Infection with Infectious Pancreatic Necrosis Virus (IPNV))

  • Kang, Kyung-Hee;Park, Kee-Soon;Lee, Chan-Hee;Lee, Chan-Hee
    • 미생물학회지
    • /
    • 제31권1호
    • /
    • pp.79-84
    • /
    • 1993
  • Infection of Chinook Salmon Embryo (CHSE) cells with IPNV resulted in a significant decrease in intracellular free calcium concentration ([$Ca^{2+}$]i) compared to mock-infected cells. The degree of the decrease in [Ca$^{2+}$]i was dependent on the amount of input virus, and treatment of IPNV-infected CHSE cells with metabolic inhibitors such as cyloheximide cordycepin partially reversed the decrease in [$Ca^{2+}$]i in IPNV-infected cells. Inactiation of PINV with UV also abolished IPNV-induced decrease in [$Ca^{2+}$]i. These data suggest an active role of IPNV in the decrease of [Ca$^{2+}$]i in the infected CHSE cells. The importance of the decrease in [$Ca^{2}$i] could be supported by the finding that the production of IPNV plaques increased in the cells treated with verapamil, a calcium influex blocker, and by lowering the concentration of extracellular calcium. Decreased production of IPNV plaques was observed by elevating the extracellular calcium. Thus, it is suggested that IPNV induced a decreased in [$Ca^{2+}$]i and the decrease in [$Ca^{2+}$]i may plan an importat role in efficient replication of IPNV.ation of IPNV.

  • PDF

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.