• Title/Summary/Keyword: metabolic characterization

Search Result 135, Processing Time 0.024 seconds

간세포 배양-약물대사를 위한 모델 연구 (I. Primary cultured hepatocytes as a key in vitro model to improve preclinical drug development)

  • 이경태
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 제2회 추계심포지움
    • /
    • pp.135-140
    • /
    • 1994
  • Over past decades, numerous in vitro model has been developed to investigate drug metabolism. In the order of complexity we found the isolated perfused liver, hepatocytes in co-culture with epithelial cells, hepatocytes in suspension and in primary culture and subcellular hepatic microsomal fractions. Because they can be easily prepared from both animals (pharmacological and toxicological species) and humans (whole livers as well as biopsies obtained during surgery) hepatocytes in primary culture provide the most powerful model to better elucidate drug behavior at an early stage of preclinical development such as : 1. the characterization of main biotransformation reactions. 2. the identification of phase I and phase II isozymes involved in such reactions 3. the evaluation of interspecies differences allowing the selection of a second toxicological animal species more closely related to man on the basis of metabolic profiles 4. the detection of the inducing and/or inhibitory effects of a drug on metabolic enzymes, the prediction of drug interactions 5. the estimation of inter-individual variability in biotransformation reactions. The use of hepatocytes, and in particular those obstained from humans, at an early stage of drug development allows the obtention of more predictive preclinical data and a better knowledge of drug behavior in humans before the first administration of the drug in healthy volunteers.

  • PDF

인삼 사포닌 생산을 위한 대사공학 (Metabolic engineering for production of ginsenosides in Panax ginseng)

  • 김태동;김윤수;한정연;임순;최용의
    • Journal of Plant Biotechnology
    • /
    • 제36권4호
    • /
    • pp.352-359
    • /
    • 2009
  • Panax ginseng roots produce triterpene saponins called ginsenosides, which are high value secondary metabolites and has been used as drugs, detergents, sweeteners, and cosmetics. In the recent years plant cell, tissue and organ cultures have developed as important alternative sources for the saponin production in Panax ginseng. Adventitious roots and hairy roots have been successfully induced and cultured for the improvement of saponin contents. Genetic and metabolic engineering to regulate saponin biosynthesis in P. ginseng might be important way to improve the medicinal values of P. ginseng. Here we introduced the protocol of genetic transformation and recent progress of functional characterization of genes involved in saponin biosynthesis in P. ginseng.

Anxiolytic Action of Taurine via Intranasal Administration in Mice

  • Jung, Jung Hwa;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.450-456
    • /
    • 2019
  • Taurine has a number of beneficial pharmacological actions in the brain such as anxiolytic and neuroprotective actions. We explored to test whether taurine could be transported to the central nervous system through the intranasal route. Following intranasal administration of taurine in mice, elevated plus maze test, activity cage test and rota rod test were carried out to verify taurine's effect on anxiety. For the characterization of potential mechanism of taurine's anti-anxiety action, mouse convulsion tests with strychnine, picrotoxin, yohimbine, and isoniazid were employed. A significant increase in the time spent in the open arms was observed when taurine was administered through the nasal route in the elevated plus maze test. In addition, vertical and horizontal activities of mice treated with taurine via intranasal route were considerably diminished. These results support the hypothesis that taurine can be transported to the brain through intranasal route, thereby inducing anti-anxiety activity. Taurine's anti-anxiety action may be mediated by the strychnine-sensitive glycine receptor as evidenced by the inhibition of strychnine-induced convulsion.

셀레늄의 동물체내 대사 및 이용에 관한 고찰 (Review for Selenium Metabolism and Its Bioavailability in the Animal)

  • 김완영;노환국
    • 현장농수산연구지
    • /
    • 제6권1호
    • /
    • pp.90-101
    • /
    • 2004
  • Se is essential for a number of enzymes that perform important metabolic functions necessary for good health. However, people in many countries do not appear to consume adequate amounts of Se to support the maximal expression of the selenoproteins and Se retention in the body of animals and humans is dependent on the ingested Se source such as organic and inorganic Se. Therefore, this review was discussed to explore metabolic characterization regarding intestinal absorption, bioavailability and selenoprotein synthesis according to animal species such as monogastrics including human beings and ruminants. Generally, organic Se provided to animals is more effective than inorganic Se in body retention for the animal owing to the difference of manner for intestinal absorption. But, Se absorption in ruminants depending on its chemical form still remained questioned by several microbial actions and feeding regimen in the rumen. And Se absorbed through small intestine is utilized for the synthesis of selenoproteins and/or retained as selenoamino acids in the body. Retained Se in the body may be recycled to synthesize selenoproteins as lacked of dietary Se. In conclusion, desirable forms of Se ingestion in the animal may be useful for Se fortification in animal products as well as well being for humans and animals.

In silico detection and characterization of novel virulence proteins of the emerging poultry pathogen Gallibacterium anatis

  • L. G. T. G. Rajapaksha;C. W. R. Gunasekara;P. S. de Alwis
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.41.1-41.9
    • /
    • 2022
  • The pathogen Gallibacterium anatis has caused heavy economic losses for commercial poultry farms around the world. However, despite its importance, the functions of its hypothetical proteins (HPs) have been poorly characterized. The present study analyzed the functions and structures of HPs obtained from Gallibacterium anatis (NCTC11413) using various bioinformatics tools. Initially, all the functions of HPs were predicted using the VICMpred tool, and the physicochemical properties of the identified virulence proteins were then analyzed using Expasy's ProtParam server. A virulence protein (WP_013745346.1) that can act as a potential drug target was further analyzed for its secondary structure, followed by homology modeling and three-dimensional (3D) structure determination using the Swiss-Model and Phyre2 servers. The quality assessment and validation of the 3D model were conducted using ERRAT, Verify3D, and PROCHECK programs. The functional and phylogenetic analysis was conducted using ProFunc, STRING, KEGG servers, and MEGA software. The bioinformatics analysis revealed 201 HPs related to cellular processes (n = 119), metabolism (n = 61), virulence (n = 11), and information/storage molecules (n = 10). Among the virulence proteins, three were detected as drug targets and six as vaccine targets. The characterized virulence protein WP_013745346.1 is proven to be stable, a drug target, and an enzyme related to the citrate cycle in the present pathogen. This enzyme was also found to facilitate other metabolic pathways, the biosynthesis of secondary metabolites, and the biosynthesis of amino acids.

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

Intrauterine diabetic milieu instigates dysregulated adipocytokines production in F1 offspring

  • Tawfik, Shady H.;Haiba, Maha M.;Saad, Mohamed I.;Abdelkhalek, Taha M.;Hanafi, Mervat Y.;Kamel, Maher A.
    • Journal of Animal Science and Technology
    • /
    • 제59권1호
    • /
    • pp.1.1-1.11
    • /
    • 2017
  • Background: Intrauterine environment plays a pivotal role in the origin of fatal diseases such as the metabolic syndrome. Diabetes is associated with low-grade inflammatory state and dysregulated adipokines production. The aim of this study is to investigate the effect of maternal diabetes on adipocytokines (adiponectin, leptin and TNF-${\alpha}$) production in F1 offspring in rats. Methods: The offspring groups were as follows: F1 offspring of control mothers under control diet (CD) (CF1-CD), F1 offspring of control mothers under high caloric diet (HCD) (CF1-HCD), F1 offspring of diabetic mothers under CD (DF1-CD), and F1 offspring of diabetic mothers under HCD (DF1-HCD). Every 5 weeks post-natal, 10 pups of each subgroup were culled to obtain blood samples for biochemical analysis. Results: The results indicate that DF1-CD and DF1-HCD groups exhibited hyperinsulinemia, dyslipidemia, insulin resistance and impaired glucose homeostasis compared to CF1-CD (p > 0.05). DF1-CD and DF1-HCD groups had high hepatic and muscular depositions of TGs. The significant elevated NEFA level only appeared in offspring of diabetic mothers that was fed HCD. DF1-CD and DF1-HCD groups demonstrated low serum levels of adiponectin, high levels of leptin, and elevated levels of TNF-${\alpha}$ compared to CF1-CD (p > 0.05). These results reveal the disturbed metabolic lipid profile of offspring of diabetic mothers and could guide further characterization of the mechanisms involved. Conclusion: Dysregulated adipocytokines production could be a possible mechanism for the transgenerational transmittance of diabetes, especially following a postnatal diabetogenic environment. Moreover, the exacerbating effects of postnatal HCD on NEFA in rats might be prone to adipcytokine dysregulation. Furthermore, dysregulation of serum adipokines is a prevalent consequence of maternal diabetes and could guide further investigations to predict the development of metabolic disturbances.

Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host

  • Kim, Mina;Jin, Yerin;An, Hyun-Joo;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1345-1358
    • /
    • 2017
  • The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N-acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.