• Title/Summary/Keyword: metabolic activity

Search Result 1,173, Processing Time 0.03 seconds

Morin alleviates fructose-induced metabolic syndrome in rats via ameliorating oxidative stress, inflammatory and fibrotic markers

  • Heeba, Gehan Hussein;Rabie, Esraa Mohamed;Abuzeid, Mekky Mohamed;Bekhit, Amany Abdelrehim;Khalifa, Mohamed Montaser
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.177-187
    • /
    • 2021
  • Metabolic syndrome (MBS) is a widespread disease that has strongly related to unhealthy diet and low physical activity, which initiate more serious conditions such as obesity, cardiovascular diseases and type 2 diabetes mellitus. This study aimed to examine the therapeutic effects of morin, as one of the flavonoids constituents, which widely exists in many herbs and fruits, against some metabolic and hepatic manifestations observed in MBS rats and the feasible related mechanisms. MBS was induced in rats by high fructose diet feeding for 12 weeks. Morin (30 mg/kg) was administered orally to both normal and MBS rats for 4 weeks. Liver tissues were used for determination of liver index, hepatic expression of glucose transporter 2 (GLUT2) as well as both inflammatory and fibrotic markers. The fat/muscle ratio, metabolic parameters, systolic blood pressure, and oxidative stress markers were also determined. Our data confirmed that the administration of morin in fructose diet rats significantly reduced the elevated systolic blood pressure. The altered levels of metabolic parameters such as blood glucose, serum insulin, serum lipid profile, and oxidative stress markers were also reversed approximately to the normal values. In addition, morin treatment decreased liver index, serum liver enzyme activities, and fat/muscle ratio. Furthermore, morin relatively up-regulated GLUT2 expression, however, down-regulated NF-κB, TNF-α, and TGF-β expressions in the hepatic tissues. Here, we revealed that morin has an exquisite effect against metabolic disorders in the experimental model through, at least in part, antioxidant, anti-inflammatory, and anti-fibrotic mechanisms.

Convergence of the relationship between smoking behavior and metabolic abnormalities in the Korean population: data from the Korean National Health and Nutrition Examination Surveys 2013-2015 (한국인의 흡연 행태와 대사이상 지표 사이 관련성에 관한 융복합 연구: 2013-2015 국민건강영양조사 자료에 근거하여)

  • Hwang, Hyo-Jeong;Choi, Yean Jung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.81-89
    • /
    • 2019
  • A total of 5,597 Korean subjects aged 20-64 years were analyzed using the KNHANES 2013-2015. Among the subjects, 41.1% of males and 5.5% of females were smokers, and risk of developing metabolic syndrome in smokers was significantly increased in men with age, alcohol, physical activity, obesity, and sleep(aOR 1.785, 95% CI 1.004-3.174), whereas it was not significantly higher in women. As a result of analyzing the difference of average nutrient intake according to smoking and metabolic syndrome, the energy, retinol and vitamin C intake were significant when age and gender were corrected in the smoker and metabolic syndrome group. In this study, we found that smoking behavior and metabolic syndrome were related to nutrient intake which requires a national level of lifestyle intervention for the prevention and management of metabolic syndrome.

Chrysanthemum zawadskii var. latilobum Extracts Inhibits of TPA-induced Invasion by Reducing MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells (유방암세포에서 구절초 추출물의 암전이 억제 효과)

  • Hwang, Jin Ki;Kim, Jeong Mi;Kim, Mi Seong;Kim, Ha Rim;Park, Yeon Ju;You, Yong Ouk;Kwon, Kang Beom;Lee, Young Rae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.782-788
    • /
    • 2013
  • Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae), colloquially known "Gujulcho" in Korea, has been used in traditional medicine for the treatment of various diseases, including cough, common cold, bladder-related disorders, gastroenteric disorders, hypertension, and inflammatory diseases, such as pneumonia, bronchitis, pharyngitis, and rheumatoid arthritis (RA) However, the effect of Chrysanthemum zawadskii var. latilobum on breast cancer invasion is unknown. In this study, we investigated the inhibitory effect of Chrysanthemum zawadskii var. latilobum extract (CZE) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced matrix metalloproteinase-9 (MMP-9) expression and cell invasion, as well as the molecular mechanisms involved in MCF-7 cells. CZE were not cytotoxic up to 100 ${\mu}g/ml$ concentration in the MCF-7 cell line. CZE decreased MMP-9 expression. TPA substantially increased NF-${\kappa}B$ DNA binding activity. Pre-treatment with CZE inhibited TPA-stimulated NF-${\kappa}B$ binding activity and NF-${\kappa}B$ related protein expression. To identify invasion ability of MCF-7 cells decreased by CZE, we used martrigel invasion assay. As a result, it is significantly decreased cell invasion. These results indicate that CZE-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. Chrysanthemum zawadskii var. latilobum may have potential value in restricting breast cancer metastasis.

Effect of coffee and green tea consumption on liver enzyme and metabolic syndrome in Korean (한국인에서 커피 및 녹차의 섭취빈도가 간염증 수치 및 대사증후군에 미치는 영향)

  • Kim, Eun-Kyoung;Jun, Dae-Won;Jang, Eun-Chul;Kim, Sang-Heum;Choi, Ho-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2570-2578
    • /
    • 2012
  • We investigated whether coffee and green tea consumption reduced the risk of elevated alanine aminotransferase(ALT)/aspartate aminotransferase(AST) activity and the prevalence of metabolic syndrome. Participants were 5,283 adults, aged 19-79 years, in the Third Korean National Health and Nutrition Examination Survey, with excessive alcohol consumption, overweight, viral hepatitis, metabolic syndrome. Increased coffee and green tea consumption was not associated with decreased serum ALT. However, amount of coffee consumption had negative correlation with serum AST activity. Moreover, coffee consumption reduced the prevalence of metabolic syndrome (p for trend <0.001). Hypertension, impaired glucose metabolism and dyslipidemia was involved as subgroup of metabolic syndrome. Comparing persons who drank more than 2 cups per day with less than 1 cup per day, the prevalence of all subgroups was declined significantly. In this large, national, population-based study, consumption of coffee was associated with lower the risk of metabolic syndrome.

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes

  • Kim, Kun Pyo;Shin, Kyong-Oh;Park, Kyungho;Yun, Hye Jeong;Mann, Shivtaj;Lee, Yong Moon;Cho, Yunhi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.525-530
    • /
    • 2015
  • Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C ($50{\mu}g/ml$) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolicrelated enzymes, and as a result, could improve overall epidermal barrier function.

A Proposal of the Coffee Enema on Obesity and Metabolic Syndrome (비만 및 대사성질환에 적용 가능한 커피관장법 제안)

  • Cha, Yun-Yeop
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Coffee enema was started by American doctor Max Gerson for cancer patients in 1920s. Coffee enema is known to remove waste material and toxins in the colon, and increase the enzymatic activity in the liver. In alternative medicine, It is to be used for fecal stasis removal, detoxification, obesity, pain control etc. In recently, The Society of Korean Medicine for Obesity Research make strenuous efforts to spread a new treatment about obesity. And Obesity is already known as one of the main causes of adult diseases. If we use the Korean medical treatment, and at the same time use coffee enema, maybe we will have a good or better clinical result about obesity and metabolic syndrome. In conclusion, we introduce a method that can be easily coffee enema. Thus, we hope that the reference to the teaching of patients.

Hypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation

  • Park, Hyunsung
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.537-538
    • /
    • 2017
  • Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxia-responsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require $O_2$ and ${\alpha}$-Ketoglutarate (${\alpha}$-KG) as substrates. The JMJDs affect gene expression through their regulation of active or repressive histone methylations. Profiling of H3K4me3, H3K9me3, and H3K27me3 under both normoxia and hypoxia identified 75 TFs whose binding motifs were significantly enriched in the methylated regions of the genes. TFs showing similar binding strengths to their target genes might be under the 'metabolic control' which changes histone methylation and gene expression by instant changing catalytic activities of resident histone demethylases.

Reevaluation of the Metabolic Essentiality of the Minerals - Review -

  • Spears, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 1999
  • Essential metabolic functions have been identified for seven macrominerals (calcirum, phosprorus, magnesium, sodium, potassium, chloride, and sulfur), and eight microminerals (cobalt, copper, iodine, iron, manganese, molybdenum, selenium, and zinc). Major functions for each of these minerals are summarized. Considerable research suggests that chromium is also essential and that it functions by facilitating insulin activity. Studies are reviewed which indicate that chromium supplementation of animal diets may: 1) increase glucose removal from blood, 2) reduce carcass fat and increase lean in nonruminants, 3) alter egg cholesterol content, and 4) enhance immunity and disease resistance in ruminants. A number of other minerals including nickel, boron, vanadium, arsenic, silicon, lithum, and lead have been reported to be essential, but specific metabolic functions have not been defined for any of these elements. Limited research in poultry suggests that boron may be of practical significance in some instances.

Finding of a Characteristic Reactive Region Common to Some Series of Chemical Carcinogens

  • Park, Byung-Kak;Lee, Moon-Hawn;Do, Sung-Tag
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 1985
  • Quantum chemical calculations were carried out to explain how the electronic states of some series compounds vary with metabolic activation. Compounds studied included aromatic amines and amides, polycyclic hydrocarbons, and a few alkylating agents that do not require metabolic activation. The 1, 2 and 4 positions forming the trans-butadiene frame of a molecule, henceforth referred to as "the trans 1, 2, 4 region", have seen to be important positions for the prediction of carcinogenic activity of these compounds. It is also evident that their electrophilic properties increase with metabolic activation. That is the sum of ${\pi}$-electron densities of the trans 1, 2, 4 region in the lowest unoccupied molecular orbital (LUMO) has been found to increase in the order of precarcinogens < proximate-ones < the carbocation ultimate-ones. This is consistent with the fact that chemical carcinogens become more strongly electrophilic with activating. This region not only provides a unified view of structurally diverse carcinogens, but also predicts uniformity in their reactive sites. Accordingly, we suggest that an understanding of the trans 1, 2, 4 region would be helpful in elucidating the mechanism of carcinogenesis.