Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.044

Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes  

Kim, Kun Pyo (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
Shin, Kyong-Oh (College of Pharmacy and MRC, Chungbuk National University)
Park, Kyungho (Department of Dermatology, Northern California Institute for Research and Education (NCIRE)-VA Medical Center, University of California, San Francisco(UCSF))
Yun, Hye Jeong (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
Mann, Shivtaj (Nova Southeastern College of Medicine, Fort Lauderdale)
Lee, Yong Moon (College of Pharmacy and MRC, Chungbuk National University)
Cho, Yunhi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.23, no.6, 2015 , pp. 525-530 More about this Journal
Abstract
Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C ($50{\mu}g/ml$) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolicrelated enzymes, and as a result, could improve overall epidermal barrier function.
Keywords
Ceramide; Ceramide metabolic enzymes; Vitamin C; Calcium; Keratinocyte differentiation; Epidermal barrier;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Uchida, Y. (2014) Ceramide signaling in mammalian epidermis. Biochim. Biophys. Acta 1841, 453-462.   DOI
2 Uchida, Y., Behne, M., Quiec, D., Elias, P. M. and Holleran, W. M. (2001a) Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J. Invest. Dermatol. 117, 1307-1313.   DOI
3 Uchida, Y., Hara, M. and Hamanaka, S. (2001b) [Stratum corneum ceramides: their function and origins]. Seikagaku 73, 268-272.
4 Uchida, Y., Hara, M., Nishio, H., Sidransky, E., Inoue, S., Otsuka, F., Suzuki, A., Elias, P. M., Holleran, W. M. and Hamanaka, S. (2000) Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J. Lipid Res. 41, 2071-2082.
5 Wertz, P. W. and Downing, D. T. (1986) Covalent attachment of omega-hydroxyacid derivatives to epidermal macromolecules: a preliminary characterization. Biochem. Biophys. Res. Commun. 137, 992-997.   DOI
6 Eichner, R., Bonitz, P. and Sun, T. T. (1984) Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J. Cell Biol. 98, 1388-1396.   DOI
7 Elias, P. M. (2005) Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol. 125, 183-200.   DOI
8 Elias, P. M. and Menon, G. K. (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv. Lipid Res. 24, 1-26.
9 Giussani, P., Maceyka, M., Le Stunff, H., Mikami, A., Lepine, S., Wang, E., Kelly, S., Merrill, A. H., Jr., Milstien, S. and Spiegel, S. (2006) Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol. Cell. Biol. 26, 5055-5069.   DOI
10 Holleran, W. M., Feingold, K. R., Man, M. Q., Gao, W. N., Lee, J. M. and Elias, P. M. (1991) Regulation of epidermal sphingolipid synthesis by permeability barrier function. J. Lipid Res. 32, 1151-1158.
11 Kim, H. J., Qiao, Q., Toop, H. D., Morris, J. C. and Don, A. S. (2012) A fluorescent assay for ceramide synthase activity. J. Lipid Res. 53, 1701-1707.   DOI
12 Holleran, W. M., Williams, M. L., Gao, W. N. and Elias, P. M. (1990) Serine-palmitoyl transferase activity in cultured human keratinocytes. J. Lipid Res. 31, 1655-1661.
13 Imokawa, G., Kuno, H. and Kawai, M. (1991) Stratum corneum lipids serve as a bound-water modulator. J. Invest. Dermatol. 96, 845-851.
14 Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C. and Obeid, L. M. (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J. Biol. Chem. 278, 34541-34547.   DOI
15 Kim, J., Yun, H. and Cho, Y. (2011) Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C. Nutr. Res. Pract. 5, 396-403.   DOI
16 Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S. and Spiegel, S. (2002) Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol. 158, 1039-1049.   DOI
17 Le Stunff, H., Milstien, S. and Spiegel, S. (2004) Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem. 92, 882-899.   DOI
18 Loidl, A., Claus, R., Deigner, H. P. and Hermetter, A. (2002) High-precision fluorescence assay for sphingomyelinase activity of isolated enzymes and cell lysates. J. Lipid Res. 43, 815-823.
19 Mehrel, T., Hohl, D., Rothnagel, J. A., Longley, M. A., Bundman, D., Cheng, C., Lichti, U., Bisher, M. E., Steven, A. C., Steinert, P. M. and et al. (1990) Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61, 1103-1112.   DOI
20 Motta, S., Monti, M., Sesana, S., Mellesi, L., Ghidoni, R. and Caputo, R. (1994) Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch. Dermatol. 130, 452-456.   DOI
21 Park, K., Elias, P. M., Hupe, M., Borkowski, A. W., Gallo, R. L., Shin, K. O., Lee, Y. M., Holleran, W. M. and Uchida, Y. (2013a) Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J. Invest. Dermatol. 133, 1942-1949.   DOI
22 Park, K., Elias, P. M., Oda, Y., Mackenzie, D., Mauro, T., Holleran, W. M. and Uchida, Y. (2011) Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway. j. Biol. Chem. 286, 34121-34130.   DOI
23 Park, K., Elias, P. M., Shin, K. O., Lee, Y. M., Hupe, M., Borkowski, A. W., Gallo, R. L., Saba, J., Holleran, W. M. and Uchida, Y. (2013b) A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol. Cell. Biol. 33, 752-762.   DOI
24 Rutti, M. F., Richard, S., Penno, A., von Eckardstein, A. and Hornemann, T. (2009) An improved method to determine serine palmitoyltransferase activity. J. Lipid Res. 50, 1237-1244.   DOI
25 Shin, K. O., Park, M. Y., Seo, C. H., Lee, Y. I., Kim, H. S., Yoo, H. S., Hong, J. T., Jung, J. K. and Lee, Y. M. (2012a) Terpene alcohols inhibit de novo sphingolipid biosynthesis. Planta Med. 78, 434-439.   DOI
26 Shin, K. O., Park, N. Y., Seo, C. H., Hong, S. P., Oh, K. W., Hong, J. T., Han, S. K. and Lee, Y. M. (2012b) Inhibition of sphingolipid metabolism enhances resveratrol chemotherapy in human gastric cancer cells. Biomol. Ther. 20, 470-476.   DOI
27 Simon, M. and Green, H. (1985) Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell 40, 677-683.   DOI