• Title/Summary/Keyword: metE gene

Search Result 33, Processing Time 0.029 seconds

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

The Significance of c-Met and Ki-67 Expression in the Head and Neck Squamous Cell Carcinoma (두경부 편평세포암에서 c-Met 단백과 Ki-67 발현의 의의)

  • Kim, Jun;Do, Nam-Yong;Park, Jun-Hee;Choi, Ji-Yun;Lim, Sung-Chul
    • Korean Journal of Bronchoesophagology
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Background and Objectives Various tumor markers have been studied in an attempt to evaluate and decide the optimal treatment of the patients with head and neek squamous cell carcinoma (HNSCC). A nuclear antigen Ki-67 is a proliferative marker of tumor cells in all phases of cell cycle except G0. c-met gene, the tyrosine kinase receptor for hepatocyte growth tactor, may play various roles in malignant transformation. The authors evaluated the prognostic significance of Ki-67 and c-Met in surgical specimens of HNSCC to determine the relationship with the various clinicopathological characteristics. Materials and Methods Formatin-fixed paraffin-embedded surgical specimens were obtained from 54 patients with HNSCC. Ki-67 and c-Met expressions were analyzed by immunohistochemical staning and were compared with the clinicopathological characteristics such as, pathologic differentiation, tumor stage, clinical stage and lymph node metastasis. Results Ki-67 and c-Met over-expression was detected in 66.7% and 90.7% in HNSCC. There was positive correlation of increased expression of Ki-67 with tumor stage. and clinical stage, increased expression of e-Met with tumor stage, clinical stage, and nodal status. The expression of c-Met had a significant positive relationship with Ki-67 index (p<0.05). Conclusion Therefore, Ki-67 and c-Met are useful markers of tumor progression, aggressiveness and prognosis in HNSCC.

  • PDF

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Biological Synthesis of Alkyne-terminated Telechelic Recombinant Protein

  • Ayyadurai, Niraikulam;Kim, So-Yeon;Lee, Sun-Gu;Nagasundarapandian, Soundrarajan;Hasneen, Aleya;Paik, Hyun-Jong;An, Seong-Soo;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.424-429
    • /
    • 2009
  • In this study, we demonstrate that the biological unnatural amino acid incorporation method can be utilized in vivo to synthesize an alkyne-terminated telechelic protein, Synthesis of terminally-functionalized polymers such as telechelic polymers is recognized to be important, since they can be employed usefully in many areas of biology and material science, such as drug delivery, colloidal dispersion, surface modification, and formation of polymer network. The introduction of alkyne groups into polymeric material is particularly interesting since the alkyne group can be a linker to combine other materials using click chemistry. To synthesize the telechelic recombinant protein, we attempted to incorporate the L-homopropargylglycine into the recombinant GroES fragment by expressing the recombinant gene encoding Met at the codons for both N- and C-terminals of the protein in the Met auxotrophic E. coli via Hpg supplementation. The Hpg incorporation rate was investigated and the incorporation was confirmed by MALDI-TOF analysis of the telcchelic recombinant protein.

A Study on DNA Sequences and Mutation of Integrase Region of Korean-type Bovine Leukemia Virus (BLV) pol Gene

  • Kwon, Oh-Sik;Kang, Jung-Soon;Park, Hyun-Jin;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Bovine leukemia virus (BLV) is a causative agent for lymphoma disease in cattle including cows worldwide. BLV shares similar virion structure and characteristics with other retroviruses. The pol gene of the BLV genome produced reverse transcriptase (RT) and integrase (IN) for important roles for BLV genome integration into host cell chromosomes that is known to be coded in the 3' side of the BLV pol gene (one third portion). In this study, we have sequenced 978 bp in the 3' side of the BLV pol gene from BLV 10C3 in order to determine the BLV IN region of it. And we compared it to the nucleotide sequences of an Australian BLV isolate. As a result, nucleotide sequences of the IN region of the Korean-type BLV pol gene were mutated at a rate of 3.7%. We can confirm that the typical mutations are such as Arg (AGG) $\rightarrow$ Lys (AAG), Thr (ACG) $\rightarrow$ Met (ATG), Ile (ATT) $\rightarrow$ Val (GTT), Asn (ACC) $\rightarrow$ His (CAC), Phe (TTT) $\rightarrow$ Leu (TTG) and Asn (ACC) $\rightarrow$ Asp (GAC). From the analysis of the sequencing data, we were able to determine the zinc-finger-like "HHCC" motif in the amino terminus of BLV IN, that was H-$X_3$-H-$X_{25}-C-X_2$-C. It was also found the DD35E motif in the IN catalytic domain as D-$X_{56}$-D-$X_{35}$-E. It fits very well to the consensus sequences of retroviral IN as well as HHCC motif.

  • PDF

Translation Initiation Factor IF1-Dependent Stimulation of 30 S Preinitiation Complex Formation: Rapid Isolation and fMEt-tRNA Binging Activity of IF1

  • CHOIK, SANG-YUN;HYUN-JUNG KIM;JUNG-IK YANG;HYO-IL CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.986-993
    • /
    • 2001
  • Translation Initiation in prokaryotes involves the formation of a 30 S preinitiation complex, in which translation initiation factors play a role in the stimulation of fMet-tRNA (fMet) binding. However, the specific function and precise mechanism of initiation factor IF1 are still unclear. One a functionally active factor with a high purity. In the present study a large quantity of active IF was rapidly purified, obtained by the overexpression of the infA gene, and then used for a functional study. The induction of infA did not appreciably affect the growth rate of the protease-deficient strain E. coli AR68 harboring the IF1 overproducing plasmid. The level of IF1 obtained was approximately $1-2\%$ of the total cell protein, which enabled the yield of highly purified IF1 (>$98\%$ pure) to be increased to 0.15 mg of IF1/g of cells. The IF1 was isolated within one day by the centrifugatioin of the ribosomal washed fraction, by ammonium sulfate fractionation, chromatography on batch of phosphocellulose, and FPLC Mono S. The overexpressed IF1 was found to be comparable to the factor isolated from normal cells, as determined by migration in NEPHGE/SDS 2-D gels. For binding of fMet-tRNA(fMet) to the 30 S ribosomal subunitis, relatively high levels of binding were obtained when IF2 was present. The addition of IF1 up to 110 pmol proportionally stimulated the binding to a variable extent. This IF1-dependent stimulation of the 30 S preinitiation complex formation demonstrated that IF1 would appear to be exclusively essential for promoting the initiation phase of protein synthesis.

  • PDF

Cloning and Characterization of a Methionine Aminopeptidase (MAP) Gene from Tetragenococcus halophilus CY54 Isolated from Myeolchi-Jeotgal

  • Tae Jin Kim;Min Jae Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • A map gene encoding methionyl-specific aminopeptidase (MAP; EC 3.4.11.18) was cloned from Tetragenococcus halophilus CY54. Translated amino acid sequence of CY54 MAP showed high similarities with those from Enterococcus faecalis (83.8%) and Streptococcus salivarius (62.2%) but low similarities with MAPs from Lactobacillus and Lactococcus genera. The map gene was overexpressed in E. coli BL21(DE3) using pET26b(+),pET26b(+), and the recombinant MAP was purified by using an Ni-NTA column. The size of recombinant MAP was 29 kDa as determined by SDS-PAGE. The optimum pH and temperature of CY54 MAP were pH 5.0 and 60℃, respectively. The activity of CY54 MAP was most significantly increased by Co2+ ion (159%), and showed the highest activity at 12% NaCl. Km and Vmax were 0.64 ± 0.006 mM and 10.12 ± 0.014 U/mg protein, respectively when met-pNA was used as the substrate. This is the first report on a MAP from Tetragenococcus species.

Alteration of Substrate Specificity by Common Variants, E158K/E308G and V257M, in Human Hepatic Drug-metabolizing Enzyme, Flavin-containing Monooxygenase 3

  • Lee, Jung-Kyu;Kang, Ju-Hee;Cha, Young-Nam;Chung, Woon-Gye;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • Our earlier studies found a significant correlation between the activities of ranitidine N-oxidation catalyzed by hepatic flavin-containing monooxygenase (FMO) and the presence of mutations in exon 4 (E158K) and exon 7 (E308G) of the FMO3 gene in Korean volunteers. However, caffeine N-1 demethylation (which is also partially catalyzed by FMO) was not significantly correlated with these FMO3 mutations. In this study, we examined another common mutation (V257M) in exon 6 of FMO3 gene. The V257M variant, which is caused by a point mutation (G769A), was commonly observed (13.21% allele frequency) in our subjects (n=159). This point mutation causes a substitution of $Val^{257}$ to $Met^{257}$, with transformation of the secondary structure. The presence of this mutant allele correlated significantly with a reduction in caffeine N-1-demethylating activity, but was not correlated with the activity of N-oxidation of ranitidine. In a family study, the low FMO activity observed in a person heterozygous for a nonsense mutation in exon 4 (G148X) and heterozygous for missense mutation in exon 6 (V257M) of FMO3 was attributed to the mutations. Our results suggest that various point mutations in the coding regions of FMO3 may influence FMO3 activity according to the probe substrates of varying chemical structure that correlate with each mutation on the FMO3 gene.

Location and Nucleotide Sequence of the Bombyx mori Nuclear Polyhedrosis Virus Polyhedrin Gene (누에 핵다각체병 바이러스의 다각체 단백질 유전자의 위치 탐색 및 염기서열)

  • 우수동;김현욱;박범석;강석권;양재명;정인식
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.20-25
    • /
    • 1992
  • The location of the polyhedrin gene of Bmbyx mori nuclear polyhedrosis virus(BmNPV) was determined by using a cloned polyhedrin gene from the Autographa californica nuclear polyhedrosis virus(AcNPV) as a hybridization probe. The 7.4 Kb PstⅠ fragment DNA of Bm-NPV was cloned to plasmid pUC19 vector. A fragment containing this gene was mapped and sequenced in its entire polyhedrin reading frame. Nucleotide sequences comparison of the polyhedrin of the BmNPV to that of previously reported by Ⅰatrou(1985) revealed that the sequence varied in 10 base, Comparison of the amino acid sequence of the two structured gene revealed that coding sequence varied 74 valine to isoleucine, 76 aspargine to serine and 155 methionine to valine.

  • PDF

Replicated Association Study for Metabolic Syndrome of the Gene Cluster in Chromosome 11q23.3

  • Kim, Sung-Soo;Park, Sangjung;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.368-375
    • /
    • 2020
  • Metabolic syndrome (MetS) is a disease that is accompanied by various metabolic related problems and refers to a disease in which various adult diseases occur along with obesity. These metabolic syndromes appear according to the individual's genetic background. APOA5-ZPR1-BUD13, a gene cluster belonging to chromosome 11q23.3, is well known for its risk of plasma triglycerides and coronary artery disease. Recently, the GWAS results for metabolic syndrome were published in Koreans. The results included the APOA5-ZPR1-BUD13, and the SNPs that first appeared in Koreans in the ZPR1 and BUD13 were also discovered. In this study, the reproducibility was investigated for the newly discovered ZPR1 (rs964184) and BUD13 (rs2075295, rs1558861) using The Health Examinees (HEXA) cohort and showed significance. In addition, BUD13 (rs117548857, rs10488698, rs149527022, rs10790162), ZPR1 (rs2075290, rs145796806, rs201247587), APOA5 (rs12791103, rs1263173, rs7396835, rs17520254) were additionally discovered and significant results were obtained. For the SNPs that showed significant results, the effect on protein expression and the effect of expression quantitative trait loci (eQTL) were also confirmed. This study is expected to contribute to the prevention and treatment of diseases with differences in onset based on individual genetic patterns as well as presenting the effect of genetic mutations in the APOA5-ZPR1-BUD13 on metabolic syndrome and blood lipid levels.