• Title/Summary/Keyword: mesoscale convective system

Search Result 21, Processing Time 0.027 seconds

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

Characterization of Convective Weather Systems in the Middle Himalaya during 1999 and 2000 Summer Monsoons (1999년과 2000년 여름몬순기간 동안 히말라야 지역에 발생한 대류계의 특성에 관한 연구)

  • Kim, Gwang-Seob;Noh, Joon-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.495-505
    • /
    • 2003
  • Convective weather systems such as organized mesoscale convective systems (Mesoscale Convective Complex, MCC and Convective Cloud Clusters, CCC) and much weaker Disorganized Short-lived Convection (DSC) in the region of India and Nepal were analyzed using the Meteosat-5 IR imagery. The diurnal march and propagation of patterns of convective activity in the Himalayas and Northern Indian subcontinent were examined. Results indicate that infrared satellite images of Northern India and along the southern flank of the Himalayas reveal a strong presence of convective weather systems during the 1999 and 2000 monsoons, especially in the afternoon and during the night. The typical MCCs have life-times of about 11 hours, and areal extent about $300,000km^2$. Although the core of MCC activity remains generally away from the Middle Himalayan range, the occurrence of heavy precipitation events in this region can be directly linked to MCCs that venture into the Lesser Himalayan region and remain within the region bounded by $25^{\circ}-30^{\circ}N$. One principal feature in the spatial organization of convection is the dichotomy between the Tibetan Plateau and the Northern Indian Plains: CCCs and DSCs begin in the Tibetan Plateau in the mid-afternoon into the evening; while they are most active in the mid-night and early morning in the Gangetic Plains and along the southern facing flanks of the Himalayas. Furthermore, these data are consistent with the daily cycle of rainfall documented for a network of 20 hydrometeorological stations in Central Nepal, which show strong nocturnal peaks of intense rainfall consistent with the close presence of Convective Weather Systems (CWSs) in the Gangetic Plains (Barros et al. 2000).

A Study of a Heavy Rainfall Event in the Middle Korean Peninsula in a Situation of a Synoptic-Scale Ridge Over the Korean Peninsula (종관규모 기압능이 한반도를 덮고 있는 기간에 중부지방에서 나타난 호우의 발생 원인)

  • Kim, Ah-Hyun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.577-598
    • /
    • 2016
  • Observational and numerical studies have been carried out to understand the cause and development processes of the heavy rainfall over the middle Korean Peninsula during 0300 LST-1500 LST 29 June 2011 (LST = UTC + 0900). The heavy rainfall event occurred as the synoptic-scale ridge extended from Western Pacific Subtropical High (WPSH) was maintained over East Asia. Observational analysis indicates that the heavy rainfall is mainly due to scattered convective systems, formed over the Yellow Sea, traveling northeastward across the middle peninsula without further organization into larger systems during 0300 LST-0800 LST, and mesoscale convective systems (MCSs) over the Yellow Sea, transformed into a squall line, traveling eastward during 0800 LST-1500 LST. Organization of convective systems into MCSs can be found over the area of mesoscale trough and convergence zone in the northern end of the low-level jet (LLJ) after 0600 LST. Both observational and numerical investigations indicate that a strong LLJ extended from the East China Sea to the Yellow Sea plays an essential role for the occurrence of heavy rainfall. The strong LLJ develops in between the WPSH and a pressure trough over eastern China. Numerical experiments indicate that the land-sea contrast of solar heating of surface and latent heating due to convective developments are the major factors for the development of the pressure trough in eastern China. Numerical study has also revealed that the mountainous terrain including the mountain complex in the northern Korean Peninsula contributes to the increase of rainfall amount in the middle part of the peninsula.

Characters of Mesoscale Convective Complex Development in Korean Peninsula (한반도 중규모 대류복합체의 발달특성에 관한 연구)

  • Lee Soon-Hwan;Won Hyo-Sung
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.698-705
    • /
    • 2005
  • Heavy rain fall in the Korean Peninsula often occurs in the summer season due to MCC (Mesoscale Convective Complex) with complex mechanism. We analysed the Characteristics and the developing mechanism of MCC occurred at 14 July 2004. The results are as follows: a) There is strong wind inflow from the South-west china sea with heavy moisture and this moisture flux acts as the source of heavy rain, b) Because of the separation of upper and lower atmosphere due to an inversion layer at 600hPa, atmosphere over the Korea Peninsula is suddenly unstable. c) This MCC shows strong shear not with wind direction, but with the wind speed, and this wind shear continues the thermodynamic unstability of the convective system. d) MCC was suddenly developed over Heuksando at 1400LST 14 July 2004. Thus we can say that the topography also was strongly associated with the development of MCC and it is also necessary to clarify the relationship between topography and MCC development. in future research.

Analysis of An Outflow Boundary Induced Heavy Rainfall That Occurred in the Seoul Metropolitan Area (수도권에서 유출류 경계(Outflow Boundary)를 따라 발생한 집중호우 분석)

  • Lee, Ji-Won;Min, Ki-Hong
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.455-466
    • /
    • 2017
  • In Korea, property and human damages occur annually due to heavy precipitation during the summer. On August 8, 2015, heavy rainfall occurred in the Seoul metropolitan area due to an outflow boundary, and $77mmhr^{-1}$ rainfall was recorded in Gwangju, Gyeonggi Province. In this study, the simulation of the WRF numerical model is performed to understand the cause and characteristics of heavy rainfall using the Conditional Instability of the Second Kind (CISK), potential vorticity (PV), frontogenesis function, and convective available potential energy (CAPE) analyses, etc. Convective cells initiated over the Shandong Peninsula and located on the downwind side of an upper level trough. Large amounts of water vapor were supplied to the Shandong Peninsula along the southwestern edge of a high pressure system, and from the remnants of typhoon Soudelor. The mesoscale convective system (MCS) developed through CISK process and moved over to the Yellow Sea. The outflow boundary from the MCS progressed east and pushed cold pool eastward. The warm and humid air over the Korean Peninsula further enhanced convective development. As a result, a new MCS developed rapidly over land. Because of the latent heat release due to convection and precipitation, strong potential vorticity was generated in the lower atmosphere. The rapid development of MCS and the heavy rainfall occurred in an area where the CAPE value was greater than $1300Jkg^{-1}$ and the fronto-genesis function value of 1.5 or greater coincided. The analysis result shows that the MCS driven by an outflow boundary can be identified using CISK process.

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula (2013년 8월 6일 한반도에서 발달한 다세포(Multicell) 대류계의 특성 분석)

  • Yoon, Ji-Hyun;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.321-336
    • /
    • 2016
  • Damages caused by torrential rain occur every year in Korea and summer time convection can cause strong thunderstorms to develop which bring dangerous weather such as torrential rain, gusts, and flash flooding. On 6 August 2013 a sudden torrential rain concentrated over the inland of Southern Korean Peninsula occurred. This was an event characterized as a mesoscale multicellular convection. The purpose of this study is to analyze the conditions of the multicellular convection and the synoptic and mesoscale nature of the system development. To this end, dynamical and thermodynamic analyses of surface and upper-level weather charts, satellite images, soundings, reanalysis data and WRF model simulations are performed. At the beginning stage there was a cool, dry air intrusion in the upper-level of the Korean Peninsula, and a warm humid air flow from the southwest in the lower-level creating atmospheric instability. This produced a single cell cumulonimbus cloud in the vicinity of Baengnyeongdo, and due to baroclinic instability, shear and cyclonic vorticity the cloud further developed into a multicellular convection. The cloud system moved southeast towards Seoul metropolitan area accompanied by lightning, heavy precipitation and strong wind gusts. In addition, atmospheric instability due to daytime insolation caused new convective cells to develop in the upstream part of the Sobaek Mountain which merged with existing multicellular convection creating a larger system. This case was unusual because the system was affected little by the upper-level jet stream which is typical in Korea. The development and propagation of the multicellular convection showed strong mesoscale characteristics and was not governed by large synoptic-scale dynamics. In particular, the system moved southeast crossing the Peninsula diagonally from northwest to southeast and did not follow the upper-level westerly pattern. The analysis result shows that the movement of the system can be determined by the vertical wind shear.

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.

An Experimental Study on the Vertical Dispersion of Plume in Convective Boundary Layer Using a Composite Turbulence Water Tank (複合因 擾亂 水槽를 이용한 대류 경계층에서의 연직방향 plume 확산에 관한 실험적 연구)

  • 박옥현;서석진;이상훈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.639-647
    • /
    • 1999
  • Experimental methods of plume dispersion in convective boundary layer using a composite turbulence water tank have been established through (ⅰ) manufacturing of water tank system, (ⅱ) providing of tracer whose volatility is relatively low, (ⅲ) development of software for image processing of dispersed particles in fluid, and (ⅳ) application of appropriate similarity law. Using these methods, the vertical dispersion coefficient $$\sigma$_2$ at long distances on mesoscale and the centerline height $Z_c$ of plumes have been measured. Measurement of $$\sigma$_2$ have been validated through comparison with CONDORS field experiments, and analysed with respect to the intensity of heat flux and mechanical turbulence as well as plume release height. Downwind distance where plume center height approaches to final level has also been analysed in respect of these three parameters.

  • PDF

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.