• 제목/요약/키워드: mesoporous silica

검색결과 187건 처리시간 0.024초

Analysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica

  • Showkat, Ali Md;Zhang, Yu-Ping;Kim, Min-Seok;Gopalan, Anantha Iyengar;Reddy, Kakarla Raghava;Lee, Kwang-Pill
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1985-1992
    • /
    • 2007
  • Ordered mesoporous silica (MCM-41) materials with different textural properties were prepared using alkyl (dodecyl, cetyl, eicosane) trimethyl ammonium bromide (DTAB, CTAB, ETAB, respectively) as structure directing surfactants, functionalized with amine groups and used as adsorbent for the toxic metal ions, Cr (VI), As (V), Pb (II) and Hg (II). Amino functionalization of mesoporous MCM-41 was achieved by cocondensation of N-[3-(trimethoxysilyl)-propyl] aniline with tetraethyl orthosilicate. Adsorption isotherm and adsorption capacity of the amine functionalized materials for Cr (VI), As (V), Pb (II) and Hg (II) ions were followed by inductively coupled plasma mass spectrometry (ICP-MS). Results demonstrate that amine functionalized MCM-41 prepared with ETAB showed higher adsorption capacity for Cr (VI), As (V), Pb (II) and Hg (II) ions in comparison to MCM-41 prepared with CTAB and DTAB. The higher adsorption capacity for MCM-41(ETAB) was correlated with amine content in the material (determined by CHN analysis) and relative decrease in pore volume and pore diameter. X-ray diffraction (XRD) analysis, nitrogen adsorptiondesorption measurements and Fourier Transform infrared spectrometry (FTIR) were used to follow the changes in the textural parameters and surface properties of the mesoporous materials as a result of amine functionalization to correlate with the adsorption characteristics. The adsorption process was found to depend on the pH of the medium.

석탄회 산업폐기물로부터 제조한 메조다공성 실리카소재를 촉매로 사용하는 Knoevenagel 수용액 반응 (Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash)

  • Dhokte, Aashish O.;Khillare, Santosh L.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.430-435
    • /
    • 2011
  • 화력발전소에서 배출되는 석탄회를 이용하여 메조다공성 소재인 MCM-41을 제조하였다. 제조한 소재는 XRD, FTIR, SEM 및 EDS 방법으로 특성을 규명하였다. 이 소재의 촉매활성을 방향족 알데히드와 malonontrile의 Knoevenagel축합 반응에서 5-arylindene malononitriles의 합성에 대해 연구하였다. 이 방법의 특징은 쉬운 취급법, 안정성, 촉매의 재사용 및 생태친화성, 고수율, 짧은 반응시간, 간단한 실험과정 및 마무리 절차 등을 들 수 있다.

잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카 (Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor)

  • 박성수;김미라;오원태;김예담;이예은;이윤건;하강범;정도준
    • 접착 및 계면
    • /
    • 제24권4호
    • /
    • pp.136-142
    • /
    • 2023
  • 본 연구에서는 실리카원으로 Tetraethyl orthosilicate (TEOS)를 사용하고 주형으로 트리블럭 공중합체(P123)를 사용하여 산성 조건에서 자기조립 방법과 수열합성 과정을 거쳐서 잘 배열된 육방체 구조의 메조세공 배열구조를 가지는 다공성 실리카 물질(Surfactant-extracted SBA-15)을 합성하였다. Surfactant-extracted SBA-15는 약 980 nm의 크기를 가지는 짧은 로드의 입자 모양을 보여주었다. 그리고 표면적과 세공 직경은 각각 730 m2g-1와 70.8 Å이었다. 한편, 포스트-합성방법(post-synthesis method)을 이용하여 메조세공 내에 아미노실란(3-aminopropyltriethoxysilane, APTES)을 그래프팅(grafting) 하였다. 아미노실란으로 개질된 메조다공성 실리카(APTES-SBA-15)는 잘 배열된 세공구조(p6mm)를 가지고 짧은 로드의 입자모양을 잘 유지 하였다. APTES-SBA-15의 표면적과 세공 직경은 각각 350 m2g-1와 60.7 Å으로 감소하였다. APTES가 개질된 메조 다공성 실리카에 희토류 금속이온(Eu3+, Tb3+) 용액을 처리하여 메조세공 내에 희토류 금속 착물이 도입된 메조다공성 실리카 물질을 합성하였다. (Eu/APTES-SBA-15, Tb/APTES- SBA-15) 이들 물질은 λex=250 nm 광에 의해 특징적인 광발광 스펙트라를 나타내었다. (Tb/APTES-SBA-15를 위하여 5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) 전이; Eu/APTES-SBA-15를 위하여 5D0→7F0 (577.7 nm), 5D0→7F1 (592.0 nm), 5D0→7F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) 전이)

Surface Plasmon Enhanced Photoluminescence of Rhodamine B Confined in SBA15

  • Dinakaran, K.;Chandramohan, A.;Venkatesan, M.R.;Devaraj, S.;Devi, V.;Alagar, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3861-3864
    • /
    • 2011
  • Rhodamine B dye (RB) has been introduced into the mesoporous silica (SBA15) and Ag anchored mesoporous silica by applying solution impregnation method. Surface treatment of SBA15 with 3-aminopropyltrimethoxysilane (APTMS) facilitates selective anchoring of the RB molecules on SBA15. The photoluminescence spectra of RB confined within SBA15 indicates higher emission intensity, than that of the RB solid, particularly in the presence of Ag nanoparticles. The significant enhancement in photoluminescence intensity is attributed to the local enhancement of the optical fields near the molecules by interactions with silver plasmons.

Asymmetric Ring Opening of Terminal Epoxides Catalyzed by Chiral Co(III)-BF3 Salen Complex Immobilized on SBA-16

  • Kim, Yong-Suk;Lee, Choong-Young;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1771-1777
    • /
    • 2009
  • The homogeneous B$F_3$ containing chiral Co(III) salen complexes were anchored non-covalently on the surfaces of mesoporous SBA-16 silica containing aluminum species. The Brönsted and Lewis acidic sites are attributed to the immobilization of fluorine functionalized chiral salen complexes on the supports. The FT-IR, UV, ESCA, and NMR analyses were performed to determine the structure of synthesized chiral salen catalysts. These heterogeneous catalysts could be applied in asymmetric ring opening of terminal epoxides by water and phenol derivatives. They showed very high enantioselectivity and yield more than 98% in the catalytic synthesis of optically active products.

Photoresponsive Nanocontainers with Ordered Porous Channels

  • Cho, Wansu;Kwon, Youngje;Park, Chiyoung
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.149-155
    • /
    • 2019
  • Controlled mass transport in response to stimuli is essential for drug carriers. The complexity of the signaling system under physiological conditions has led researchers to develop precise nanocontainers that respond to stimuli in the physiological environment. Owing to several reasons, soft nanocontainers such as liposomes and micelles have been investigated for use as drug delivery systems. However, such carriers often suffer from the undesired leakage of drug molecules. In contrast, inorganic nanocontainers are robust, and their surfaces can be easily functionalized. For example, mesoporous silica nanoparticles equipped with gatekeeper molecules are increasingly being used for the controlled release of drug molecules in response to the desired stimuli. Since the development of the first hybrid nanocontainer comprising molecular machines, multiple versions of such gatekeeper systems featuring significantly improved stability and precise response to stimuli have been reported. In this study, various methods for incorporating photoresponsive nanocontainers with porous channels are developed.

Color manipulation of silica aerogel by copper incorporation during sol-gel process

  • Lee, Sang-Seok;Park, Il-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.30-34
    • /
    • 2019
  • Copper (Cu)-incorporated silica aerogel was synthesized by a sol-gel process with two-step drying process for color modification. The microstructure of the silica aerogel was not affected significantly by the Cu concentration and an amorphous structure was maintained without any crystalline impurity phases. The textural properties of the silica aerogels investigated by using N2 adsorption-desorption isotherms exhibited the typical features of mesoporous materials. The pore size and porosity were not changed significantly even with the incorporation of Cu up to 1.5 M, which indicates negligible variation of thermal insulating properties. However, the color of the aerogel changed from white and light greenish to dark greenish with increasing Cu content. The color change of the silica aerogel was due to the modification of the electron energy band structure of silica by the Cu atomic levels. Therefore, the color of the silica aerogel powders could be manipulated by incorporating Cu without degrading the thermal insulating properties.