• Title/Summary/Keyword: mesocosm

Search Result 72, Processing Time 0.028 seconds

Marine ecosystem risk assessment using a land-based marine closed mesocosm: Proposal of objective impact assessment tool (육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시)

  • Yoon, Sung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.88-99
    • /
    • 2021
  • In this study, a land-based marine closed mesocosm (LMCM) experiment was performed to objectively assess the initial stability of an artificial ecosystem experiment against biological and non-biological factors when evaluating ecosystem risk assessment. Changes in the CV (coefficient of value) amplitude were used as data to analyze the stability of the experimental system. The CV of the experimental variables in the LMCM groups (200, 400, 600, and 1,000 L) was maintained within the range of 20-30% for the abiotic variables in this study. However, the difference in CV amplitude in biological factors such as chlorophyll-a, phytoplankton, and zooplankton was high in the 600 L and 1,000 L LMCM groups. This result was interpreted as occurring due to the lack of control over biological variables at the beginning of the experiment. In addition, according to the ANOVA results, significant differences were found in biological contents such as COD (chemical oxygen demand), chlorophyll-a, phosphate, and zooplankton in the CV values between the LMCM groups(p<0.05). In this study, the stabilization of biological variables was necessary to to control and maintain the rate of changes in initial biological variables except for controllable water quality and nutrients. However, given the complexity of the eco-physiological activities of large-scale LMCMs and organisms in the experimental group, it was difficult to do. In conclusion, artificial ecosystem experiments as a scientific tool can distinguish biological and non-biological factors and compare and analyze clear endpoints. Therefore, it is deemed necessary to establish research objectives, select content that can maintain stability, and introduce standardized analysis techniques that can objectively interpret the experimental results.

Removal of RDX using Lab-scale Plug Flow Constructed Wetlands Planted with Miscanthus sacchariflorus (Maxim.) Benth (물억새를 식재한 플러그 흐름 습지에서의 RDX 제거동역학)

  • Lee, Ahreum;Kim, Bumjoon;Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is the most important explosive contaminant, both in concentration and in frequency, at military shooting ranges in which green technologies such as phytoremediation or constructed wetlands are the best option for mitigation of explosive compounds discharge to the environment. A study was conducted with two identical lab-scale plug flow constructed wetlands planted with Amur silver grass to treat water artificially contaminated with 40 mg/L of toxic explosive compound, RDX. The reactor was inoculated with or without RDX degrading mixed culture to evaluate plant-microorganism interactions in RDX removal, transformation products distribution, and kinetic constants. RDX and its metabolites in water, plant, and sediment were analyzed by HPLC to determine mass balance and kinetic constants. After 30 days of operation, the reactor reached steady-state at which more than 99% of RDX was removed with or without the mixed culture inoculation. The major transformation product was TNX (Trinitroso-RDX) that comprised approximately 50% in the mass balance of both reactors. It was also the major compound in the plant root and shoot system. Acute toxicity analysis of the water samples showed more than 30% of toxicity reduction in the effluent than that of influent containing 40 mg/L of RDX. In the Amur silver grass mesocosm seeded with the mixed culture, the specific RDX removal rate, that is 1st order removal rate normalized to plant fresh weight, was estimated to be 0.84 kg−1 day−1 which is 16.7% higher than that in the planted only mesocosm. Therefore, the results of this study proved that Amur silver grass is an effective plant for RDX removal in constructed wetlands and the efficiency can be increased even more when applied with RDX degrading microbial consortia.

The Effect of Enhanced Nitrate Input on the Temporal Variation of the Plankton Community in a Mesocosm (질산염 첨가에 따른 중형폐쇄생태계 내 플랑크톤 군집의 변화)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Shin, Kyoung-Soon;Chang, Man;Hwang, Keun-Choon
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.341-349
    • /
    • 2005
  • Temporal variation of the natural planktonic community in the Southern Sea of Korea was investigated by using low floating enclosed bags (3.2m deep and 2,500 liter) in order to understand the effect of enriched nitrate on the planktonic community in the spring (March-April) of 2002. Prior to beginning the incubation, the bags were placed in two different concentrations of nitrate, which consisted of control (ambient water) and experimental mesocosms (final concentration of $12{\mu}M$). The nitrate concentration in the experimental mesocosms remained significantly higher than those in control mesocosms throughout the study period (ANOYA, p<0.001). Following the addition of nitrate, abundance and chi-a concentration of phytoplankton peaked on Day 1, when diatoms established the peak in the experimental mesocosms. Diatoms consisted mainly of Thalasxiosira decipiens, Pseudo-nitzschia pungem, Leptocylindrus danicu, Thalassionema nitzschioides, Chaetoceros pseudocrinitus and Actinoptychus senariu. However, the peak did not lead to the difference in abundance and composition of phytoplankton between control and experimental mesocosms during the study period. The dinoflagellates began to increase soon after the diatoms decreased in all mesocosms. Copepods, as a dominant group in the rnosozooplankton community, showed no immediate peak in relation to the nitrate addition, but only their own developmental process from the eggs to adult stage during the study period. The bottom-up control from enriched nitrate via phytoplankton to adult copepods was not distinguished in terms of the abundance of the planktonic community. This might stem from the relatively low nitrate availability of phytoplankton at no N-limited seawater and the weak coupling between rapidly sunken diatoms and copepods through the water column.

Effect of Algal Bloom Control Using the Mesocosms Installed with Zooplankton, Fishes, Aquatic Macrophytes and Artificial Marshy Land in Kyungan Stream (경기도 경안천에 설치한 메소코즘 내에서의 동물플랑크톤, 어류, 수생식물, 인공식물섬에 의한 조류저감효과 연구)

  • Song, Mi-Ae;Kong, Dong-Soo;Lee, Ok-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.641-647
    • /
    • 2013
  • We installed mesocosms including zooplankton, fishs, artificial marshy land and aquatic macrophytes in Kyoungan stream to study the reduction effects of algae from Sep. 16 to Oct. 28, 2011. The control tendency of phytoplankton taxa was compared by analyzing community structure and dominant species in each mesocosm. Under the condition where Bluegill was absent, Daphnia similoides showed good effect of algal control since it has large food area and has high grazing pressure. Bluegill selectively preys upon large zooplankton, Daphnia similoides, as it also preys on small zooplanktons that flow in. In condition that Bluegill was absent, Daphnia similoides preyed selectively large phytoplankton (Cryptomonas ovata). Due to the shading of light, removal of nutrients and providing refuge for small zooplanktons, aquatic macrophytes and artificial marshy land showed high level of algal control. In corrals with aquatic macrophytes and artificial marshy land, the dominancy of genus Coelastrum and Pediastrum, which are difficult for small zooplanktons to feed on, relatively increased. In conclusion, under conditions of small number of predators such as Bluegill, Daphnia similoides is thought to be useful in algal bloom; however, when lots of predators are present, using small sized zooplanktons along with artificial marshy land and aquatic macrophytes is thought to be more useful than using large zooplanktons.

Effects of Sediment Removal on Water Quality, Phytoplankton Communities and Benthic Macroinvertebrate (퇴적물 제거가 수질과 식물플랑크톤, 저서성 대형무척추동물에 미치는 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Lee, Eun Jeong;Byeon, Myeong-Seop;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.301-307
    • /
    • 2018
  • This study investigated the effects of sediment removal on water quality and phytoplankton development by setting up mesocosms at Uiam Lake, South Korea, and analyzing the environmental parameters and phytoplankton communities between June and October 2015. The comparison between testbed without sediment removal (TB-1) and testbed after sediment removal (TB-2) gave similar values for water temperature, pH, dissolved oxygen (DO), and electrical conductivity. Nevertheless, the average electrical conductivities of the two testbeds were $139{\mu}S/cm$ and $135{\mu}S/cm$, which were lower than the value obtained from the external control point (TB-con; $154{\mu}S/cm$). The small difference in total phosphorus (TP) and total nitrogen (TN) concentrations between the two testbeds implied that sediment removal did not greatly reduce nutrients; however, the phytoplankton cell count had decreased by approximately 37 % in TB-2 (average 1,663 cells/mL) compared to TB-1 (average 2,625 cells/mL). Compared to TB-con, the phosphorus and nitrogen concentrations of the two testbeds had decreased by 39 % and 30 %, respectively, whereas the phytoplankton abundance had decreased by up to 73 %, perhaps because of the blocked inflow of nutrients and the stabilized body of water caused by the installation of the mesocosm. The concentration of geosmin was lower in testbeds than in the external point, because installation of the structures had reduced the cyanobacteria biomass.

Application of Exergy in Aquatic Ecosystems Health Assessment : Experimental Approach and Field Observations (수계 생태계의 건강성 평가 척도로서의 엑서지 적용성에 관한 연구: 실험 및 야외 관찰)

  • Silow, Eugene A.;Oh, In-Hye
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.117-123
    • /
    • 2003
  • The results of field experiments with mesocosms on Lake Baikal, containing natural plankton assemblage, and laboratory experiments with microcosms containing Daphnia magna and Chlorella vulgaris demonstrated decrease of the structural exergy of the communities after the addition of allochtonous compounds peptone, diesel oil, o-diphenol, $CdCl_2$ to mesocosmsassemblage, phenol, $CoCl_2$ and $CuSO_4$ to micro-cosms. Structural exergy changes were more expressed than changes of components biomasses and total biomass of the community. Comparison of exergy content for benthos in cleanand affected by the discharges of Baikalsk Pulp and Paper Combine also showed sufficient docrease of structural exergy in polluted area. It points to the possibility of the use of structural exergy as ecosystem health reflecting parameter.

Short-term changes of phytoplankton communities after nutrient addition and establishment of stable mass culture condition to prepare the type approval test of USCG Phase-II in mesocosm enclosure (메소코즘에서 USCG phase-II 형식승인 대비 영양염 첨가에 따른 식물플랑크톤 대량 배양조건 확립 및 군집구조의 단주기변화)

  • Baek, Seung Ho;Lee, Min Ji;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.34-42
    • /
    • 2016
  • In order to prepare for the type approval test for the United States Coast Guard (USCG) Phase-II of Ballast Water Treatment System (BWTS), a phytoplankton mass culture was conducted in a mesocosm enclosure. We evaluated the response of the phytoplankton community after nutrient addition (+N, +P, and +NP) and investigated the development of the species with increasing culture time. After nutrient dosing, the phytoplankton population significantly (p < 0.05) increased from day 1 to day 3, depending on the nutrient treatments In particular, the specific growth rate of the phytoplankton community in the case of +NP treatment and + N treatment were estimated to be $2.47d^{-1}$ and $1.98d^{-1}$, respectively. The phytoplankton population density in the case of + NP treatment was approximately 50 times higher than that of the control group, suggesting that these treatments could be useful for mass culturing phytoplankton (> 75% of natural community) for the approval regulation of USCG Phase-II. In the phytoplankton community of the mesocosm, Pseudo-nitzchia spp. dominated in the logarithmic growth phase. The cell density decreased significantly (p < 0.05) with increasing time, coinciding with the nutrient limitation. At that time, the dominance of Pseudo-nitzchia spp. shifted to that of Cylindrotheca closterium. Therefore, the optimum nutrient concentration ($N:30{\mu}M$, $P:3{\mu}M$) and reasonable harvesting time (after 3 days in summer) found in this study for the mass culturing of phytoplankton may be helpful to meet the USCG Phase-II biological criteria to be used in BWTS.

A Study on the Water Quality Management of Modular Revetment Structure installed Low-Maintenance Constructed Wetland (플랜터형 호안구조물을 설치한 저관리형 습지의 수질 제어 기작에 관한 연구)

  • Ham, Eun Kyung;Choi, Yun Eui;Kim, Min;Chon, Jinhyung
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.184-192
    • /
    • 2015
  • This study is a basic research for low maintenance constructed wetlands which can prevent water quality deterioration due to wetland soils. The purpose of this study is to analyze water quality control mechanisms of constructed wetland on the artificial ground which installed the modular revetment structure(MRS), a device that separates water and soil. This study was then conducted with two different wetland mesocosms (a treatment plot and a control). These mesocosms were monitored to analyze effects of water quality control of the MRS. A treatment plot was built, and separated into soil and water, by filling the MRS with the decomposed granite soil in the mesocosm made of rubber material. A control plot was built where the decomposed granite soils were exposed to water by leaving the soil on the bottom of the mesocosm made of rubber material. Water quality was then analyzed by using Kolmogorov-Smirnov Z examination which then showed that pH, BOD, SS, Chl-a, T-P, T-N had statistically valid difference between a container with the MRS and one without it. According to the analysis of the water quality, the temperature and the EC level came out similarly and both mesocosm showed same level on pH and DO. A treatment plot had higher levels of BOD, SS Chl-a, and T-P. A control plot's T-N value was little lower than that of the treatment plot. This study suggests method of constructed wetlands using the MRS prevents problems occurring in wetland soils: aridity of wetlands by soil erosion, eutrophication, and algal blooms due to nutrients released from wetland soil. These functions of constructed wetland with the MRS increase aesthetic, ecologic, social, and economic value of the wetland. Outcomes of this research will later enable more proficient way of stabilizing water quality and provide data for planning low maintenance constructed wetlands.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities (화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구)

  • Sakamoto, Masaki;Mano, Hiroyuki;Hanazato, Takayuki;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.