DOI QR코드

DOI QR Code

The Effect of Enhanced Nitrate Input on the Temporal Variation of the Plankton Community in a Mesocosm

질산염 첨가에 따른 중형폐쇄생태계 내 플랑크톤 군집의 변화

  • 강정훈 (한국해양연구원 남해연구소) ;
  • 김웅서 (한국해양연구원 해양자원연구본부) ;
  • 신경순 (한국해양연구원 남해연구소) ;
  • 장만 (한국해양연구원 남해연구소) ;
  • 황근춘 (한국해양연구원 남해연구소)
  • Published : 2005.09.30

Abstract

Temporal variation of the natural planktonic community in the Southern Sea of Korea was investigated by using low floating enclosed bags (3.2m deep and 2,500 liter) in order to understand the effect of enriched nitrate on the planktonic community in the spring (March-April) of 2002. Prior to beginning the incubation, the bags were placed in two different concentrations of nitrate, which consisted of control (ambient water) and experimental mesocosms (final concentration of $12{\mu}M$). The nitrate concentration in the experimental mesocosms remained significantly higher than those in control mesocosms throughout the study period (ANOYA, p<0.001). Following the addition of nitrate, abundance and chi-a concentration of phytoplankton peaked on Day 1, when diatoms established the peak in the experimental mesocosms. Diatoms consisted mainly of Thalasxiosira decipiens, Pseudo-nitzschia pungem, Leptocylindrus danicu, Thalassionema nitzschioides, Chaetoceros pseudocrinitus and Actinoptychus senariu. However, the peak did not lead to the difference in abundance and composition of phytoplankton between control and experimental mesocosms during the study period. The dinoflagellates began to increase soon after the diatoms decreased in all mesocosms. Copepods, as a dominant group in the rnosozooplankton community, showed no immediate peak in relation to the nitrate addition, but only their own developmental process from the eggs to adult stage during the study period. The bottom-up control from enriched nitrate via phytoplankton to adult copepods was not distinguished in terms of the abundance of the planktonic community. This might stem from the relatively low nitrate availability of phytoplankton at no N-limited seawater and the weak coupling between rapidly sunken diatoms and copepods through the water column.

Keywords

References

  1. 양동범. 2000. 연안역에서의 육지와 해양 상호작용연구(1) 남해 동부연안역의 영양물질 유입과 생물생산력 개발 환경조성 기반기술. 해양연구소, BSPE 00784-00-1294-4. 508 p.
  2. Bienfang, P.K. 1982. Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems. p. 261-274. In: Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems. ed. by G.D. Grice and M.R. Reeve. Springer-Verlag, New York.
  3. Chang, M., W.-S. Kim, and J.H. Lee. 1995. Phytoplankton blooms in the coastal waters of Korea - Red tides in Masan and Chinhae Bays. Ocean Res., 17, 137-156. https://doi.org/10.1016/0141-1187(95)90005-5
  4. Chavez, F.P. and R.T. Barber. 1987. An estimate of new production in the equatorial Pacific. Deep-Sea Res., 34, 1229-1243. https://doi.org/10.1016/0198-0149(87)90073-2
  5. Conley, D.J. and T.C. Malone. 1992. Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Mar. Ecol. Prog. Ser., 81, 121-128. https://doi.org/10.3354/meps081121
  6. Cullen, J.J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll-a. Can. J. Fish. Aquat. Sci., 39, 791-803. https://doi.org/10.1139/f82-108
  7. Davis, C.O. 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments. p. 324-332. In: Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems. ed. by G.D. Grice and M.R. Reeve. Springer-Verlag, New York.
  8. Dickson, M.L. and P.A. Wheeler. 1995. Nitrate uptake rates in a coastal upwelling regime: a comparison of PNspecies, absolute, and chl-a specific rates. Limnol. Oceanogr., 4, 533-543.
  9. Escaravage, V., T.C. Prins, A.C. Smaal, and J.C.H. Peeters. 1996. The response of phytoplankton communities to phosphorus input reduction in mesocosm experiments. J. Exp. Mar. Biol. Ecol., 198, 55-79. https://doi.org/10.1016/0022-0981(95)00165-4
  10. Escaravage, V., T.C. Prins, C. Nijdam, A.C. Smaal, and J.C. Peeters. 1999. Response of phytoplankton communities to nitrogen input reduction in mesocosm experiments. Mar. Ecol. Prog. Ser., 179, 187-199. https://doi.org/10.3354/meps179187
  11. Fisher, T.R., A.B. Gustafson, K. Sellner, R. Lacouture, L.W. Haas, R.L. Wetzel, R. Magnien, D. Everitt, B. Michaels, and R. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay. Mar. Biol., 133, 763-778. https://doi.org/10.1007/s002270050518
  12. Hansen, P.J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol., 114, 327-334. https://doi.org/10.1007/BF00349535
  13. Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33, 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  14. Iwasaki, H., H. Katoh, and T. Fujiyama. 1977. Cultivation of the marine copepod Acartia clausi Giesbrecht. I. Factors affecting the generation time and egg production. Bull. Plankton Soc. Jpn., 24, 55-61.
  15. Jacobsen, A., J.K. Egge, and B.R. Heimdal. 1995. Effects of increased concentration of nitrate and phosphate during a spring bloom experiment in mesocosm. J. Exp. Mar. Biol. Ecol., 187, 239-251. https://doi.org/10.1016/0022-0981(94)00183-E
  16. Kang, J.H., W.-S. Kim, K.I. Chang, and J.H. Noh. 2004. Distribution of plankton related to the mesoscale physical structure within the surface mixed layer in the southwestern East Sea, Korea. J. Plankton. Res., 26, 1515-1528. https://doi.org/10.1093/plankt/fbh140
  17. Kim, W.-S. 2001. Application of enclosed experimental ecosystem to the study on marine ecosystem. Kor. J. Environ. Biol., 19, 183-194.
  18. Kim, W.-S., M. Chang, and J.H. Shim. 1992. Multitrophic interactions as a trigger of the Gyrodinium aureolum bloom in Reeves Bay. New York. J. Oceanol. Soc. Kor., 27, 268-276.
  19. Lee Chen, Y.L., H.Y. Chen, G.C. Gong, Y.H. Lin, S. Jan, and M. Takahashi. 2004. Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont. Shelf Res., 24, 1321-1338. https://doi.org/10.1016/j.csr.2004.04.002
  20. McLaren, I.A. 1978. Generation lengths of some temperate marine copepods : estimation, prediction, and implications. J. Fish. Res. Bd. Can., 35, 1330-1342. https://doi.org/10.1139/f78-208
  21. Nakamura, Y., S.Y. Suzuki, and J. Hiromi. 1996. Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Aquat. Microb. Ecol., 10, 131-137. https://doi.org/10.3354/ame010131
  22. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York. 173 p.
  23. Ryan, J.P., J.A. Yoder, and D.W. Townsend. 2001. Influence of a Gulf Stream warm-core ring on water mass and chlorophyll distributions along the southern flank of Georges Bank. Deep-Sea Res. II., 48, 159-178. https://doi.org/10.1016/S0967-0645(00)00117-X
  24. Sellner, K.G., G.J. Doucette, and G.J. Kirkpatrick. 2003. Harmful algal blooms: causes, impacts and detection. J. Ind. Microbiol. Biotechnol., 30, 383-406. https://doi.org/10.1007/s10295-003-0074-9
  25. Takahashi, M., I. Koike, K. Iseki, P.K. Bienfang, and A. Hattori. 1982. Phytoplankton species responses to nutrient changes in experimental enclosures and coastal waters. p. 333-340. In: Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems. ed. by G.D. Grice and M.R. Reeve. Springer-Verlag, New York.
  26. Tester, P.A. and J.T. Turner. 1990. How long does it take copepods to make eggs? J. Exp. Mar. Biol. Ecol., 141, 169-182. https://doi.org/10.1016/0022-0981(90)90222-X
  27. Turner, J.T., P.A. Tester, J.A. Lincoln, P. Carlsson, and E. Graneli. 1999. Effects of N:P:Si ratios and zooplankton grazing phytoplankton communities in the northern Adriatic Sea. III. Zooplankton populations and grazing. Aquat. Microb. Ecol., 18, 67-75. https://doi.org/10.3354/ame018067
  28. Uye, S.I. 1981. Fecundity studies of neritic calanoid copepods Acartia clausi Giesbrecht and A. steueri Smirnov: A simple empirical model of daily egg production. J. Exp. Mar. Biol. Ecol., 50, 255-271. https://doi.org/10.1016/0022-0981(81)90053-8
  29. Uye, S.I. 1988. Temperature-dependent development and growth of Calanus sinicus (Copepoda:Calanoida) in the laboratory. Hydrobiologia, 167/168, 285-293. https://doi.org/10.1007/BF00026316
  30. Vollenweider, R.A., A.G. Rinaldi, and G. Montanari. 1992. Eutrophication, structure and dynamics of a marine coastal system: results of ten years monitoring along the Emilia Romagna coast (Northwest Adriatic Sea). p. 63-106. In: Marine Coastal Eutrophication. ed. by R.A. Vollenweider, R. Marcheti, and R. Viviani. Elsevier, Amsterdam.