• Title/Summary/Keyword: mesh-free method

Search Result 165, Processing Time 0.022 seconds

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Development of Numerical Computation Techniques for the Free-Surface of U-Tube Type Anti-roll Tank (U-튜브형 횡동요 감쇄 탱크의 자유수면 해석기법 개발에 관한 연구)

  • Sang-Eui Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1244-1251
    • /
    • 2022
  • Marine accidents due to a loss of stability, have been gradually increasing over the last decade. Measures must be taken on the roll reduction of a ship. Amongst the measures, building an anti-roll tank in a ship is recognized as the most simple and effective way to reduce the roll motion. Therefore, this study aims to develop a computational model for a U-tube type anti-roll tank and to validate it by experiment. In particular, to validate the developed computational model, the height of the free surface in the tank was measured in the experiment. To develop a computational model, the mesh dependency test was carried out. Further, the effects of a turbulence model, time step size, and the number of iterations on the numerical solution were analyzed. In summary, a U-tube type anti-roll tank simulation had to be performed accurately with conditions of a realizable k-𝜖 turbulence model, 10-2s time step size, and 15 iterations. In validation, the two cases of measured data from the experiment were compared with the numerical results. In the present study, STAR-CCM+ (ver. 17.02), a RANS-based commercial solver was used.

Mesh Refinement for Isogeometric Analysis and Post-Processing (등기하 해석을 위한 요소망 정제와 후처리 방법)

  • Kim, Jee-In;Luu, Tuan Anh;Lee, Jae-Hong;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • This paper derives Isogeometric analysis and post-processing method of surface that are generated by NURBS basis function for accurate geometric modeling and structure analysis of free-form. By deforming these parameters that are consisted of control points, knots, polynomial, variable geometric models are derived. The basis function that is used to Isogeometric analysis is same to the basis function of NURBS that is used to generate geometric models. For performing isogeometric analysis, h-p-k refinement is performed without changing of original geometry. To visualize the results of isogeometric analysis that control points' displacements, post-processing method that is the interface method between IGES format and Rhinoceros is derived.

Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera (다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Kwon, Soon-Chul;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.439-448
    • /
    • 2020
  • In this paper, we propose a modified optimization algorithm for point cloud matching of multi-view RGB-D cameras. In general, in the computer vision field, it is very important to accurately estimate the position of the camera. The 3D model generation methods proposed in the previous research require a large number of cameras or expensive 3D cameras. Also, the methods of obtaining the external parameters of the camera through the 2D image have a large error. In this paper, we propose a matching technique for generating a 3D point cloud and mesh model that can provide omnidirectional free viewpoint using 8 low-cost RGB-D cameras. We propose a method that uses a depth map-based function optimization method with RGB images and obtains coordinate transformation parameters that can generate a high-quality 3D model without obtaining initial parameters.

Numerical simulation of wave interacting with a free rolling body

  • Jung, Jae Hwan;Yoon, Hyun Sik;Chun, Ho Hwan;Lee, Inwon;Park, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.333-347
    • /
    • 2013
  • The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.

Development of a Numerical Model of Shallow-Water Flow using Cut-cell System (분할격자체계를 이용한 천수흐름 수치모형의 개발)

  • Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids.

Studies on Naringinase Produced from Aspergillus nidulance -Part III. Preparation and Properties of Immobilized Naringinase- (Aspergillus nidulance가 생산하는 Naringinase에 관한 연구 -제 3 보 고정화(固定化) Naringinase의 제조 및 그 성질-)

  • Bai, Dong-Hoon;Pyun, Yu-Ryang;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.209-214
    • /
    • 1978
  • Naringinase produced from Aspergillus nidulans was immobilized in acrylamide gel by the entrapping method and its characteristics were studied. Optimum acrylamide concentration was 10%, but N.N'-methylene bisacrylamide concentration had no influence on the final enzyme gel activity. The suitable amount of enzyme dissolved in the polymerization reaction mixture was 126 units/ml. Optimum pH of immobilized enzyme was 5.0 which was the same as that of free enzyme. However, immobilized enzyme showed a higher optumum reaction temperature, markedly increased pH and temperature stability. In a packed-column reactor, the observed reaction rate was increased proportionally to flow rate up to 5ml/min., but independent above 6ml/min.. Activation energy of the immobilized enzyme was 13.01 Kcal/mole, and the energy required for the thermal inactivation was 39.4 Kcal/mole. The apparent Km for 100 mesh gel was $7.23{\times}10^{-3}$ mole.

  • PDF

Early Reconstruction of Orbital Roof Fractures: Clinical Features and Treatment Outcomes

  • Kim, Jin-Woo;Bae, Tae-Hui;Kim, Woo-Seob;Kim, Han-Koo
    • Archives of Plastic Surgery
    • /
    • v.39 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • Background : Orbital roof fractures are frequently associated with a high energy impact to the craniofacial region, and displaced orbital roof fractures can cause ophthalmic and neurologic complications and occasionally require open surgical intervention. The purpose of this article was to investigate the clinical features and treatment outcomes of orbital root fractures combined with neurologic injuries after early reconstruction. Methods : Between January 2006 and December 2008, 45 patients with orbital roof fractures were admitted; among them, 37 patients were treated conservatively and 8 patients underwent early surgical intervention for orbital roof fractures. The type of injuries that caused the fractures, patient characteristics, associated fractures, ocular and neurological injuries, patient management, and treatment outcomes were investigated. Results : The patients underwent frontal craniotomy and free bone fragment removal, their orbital roofs were reconstructed with titanium micromesh, and associated fractures were repaired. The mean follow up period was 11 months. There were no postoperative neurologic sequelae. Postoperative computed tomography scans showed anatomically reconstructed orbital roofs. Two of the five patients with traumatic optic neuropathy achieved full visual acuity recovery, one patient showed decreased visual acuity, and the other two patients completely lost their vision due to traumatic optic neuropathy. Preoperative ophthalmic symptoms, such as proptosis, diplopia, upper eyelid ptosis, and enophthalmos were corrected. Conclusions : Early recognition and treatment of orbital roof fractures can reduce intracranial and ocular complications. A coronal flap with frontal craniotomy and orbital roof reconstruction using titanium mesh provides a versatile method and provides good functional and cosmetic results.

Image Warping Using Vector Field Based Deformation and Its Application to Texture Mapping (벡터장 기반 변형기술을 이용한 이미지 와핑 방법 : 텍스쳐 매핑에의 응용을 중심으로)

  • Seo, Hye-Won;Cordier, Frederic
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.404-411
    • /
    • 2009
  • We introduce in this paper a new method for smooth foldover-free warping of images, based on the vector field deformation technique proposed by Von Funck et al. It allows users to specify the constraints in two different ways: positional constraints to constrain the position of a point in the image and gradient constraints to constrain the orientation and scaling of some parts of the image. From the user-specified constraints, it computes in the image domain a C1-continuous velocity vector field, along which each pixel progressively moves from its original position to the target. The target positions of the pixels are obtained by solving a set of partial derivative equations with the 4th order Runge-Kutta method. We show how our method can be useful for texture mapping with hard constraints. We start with an unconstrained planar embedding of a target mesh using a previously known method (Least Squares Conformal Map). Then, in order to obtain a texture map that satisfies the given constraints, we use the proposed warping method to align the features of the texture image with those on the unconstrained embedding. Compared to previous work, our method generates a smoother texture mapping, offers higher level of control for defining the constraints, and is simpler to implement.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.