• Title/Summary/Keyword: mesh structure

Search Result 625, Processing Time 0.03 seconds

Two-dimensional nonconforming finite elements: A state-of-the-art

  • Choi, Chang-Koon;Kim, Sun-Hoon;Park, Young-Myung;Chung, Keun-Young
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-61
    • /
    • 1998
  • A state-of-the-art report on the new finite elements formulated by the addition of nonconforming displacement modes has been presented. The development of a series improved nonconforming finite elements for the analysis of plate and shell structures is described in the first part of this paper. These new plate and shell finite elements are established by the combined use of different improvement schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the construction of the substitute shear strain fields. The improvement achieved may be attributable to the fact that the merits of these improvement techniques are merged into the formation of the new elements in a complementary manner. It is shown that the results obtained by the new elements give significantly improved solutions without any serious defects such as; the shear locking, spurious zero energy mode for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling degrees of freedom are also presented.

The Assesment of Tunnelling Induced Damage for the Opera House (Emphasis on 3D FEM Analysis) (터널 시공에 따른 오페라극장의 영향평가 (수치해석을 중심으로))

  • Hwang, Eui-Seok;Lee, Bong-Youl;Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2002
  • This research work is to investigate influences of the Opera House in Arts Center caused by the twin tunnel construction. The Opera House of 3D structural feature with various type of foundations and adjacent twin tunnels are modeled in 3-Dimensional mesh for FEM analysis. Confirmation of safety is essential for this particular type of structure, and attention level and warning level of control criteria are examined for the protection of the Opera House by means of the analytical results.

  • PDF

A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch (점용접의 간격 변화에 의한 구조 강성 영향 평가 연구)

  • Hong, Min-Sung;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

Contact Analysis on a Born-Holder Assembly for Wire Bonding (와이어 본더용 Horn-Holder Assembly의 접촉 해석)

  • Jang, Chang-Soo;Ahn, Geun-Sik;Kim, Young-Joon;Kwak, Dong-Ok;Boo, Seong-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2008-2017
    • /
    • 2002
  • Joint structure of a transducer horn-holder assembly fur a wire bonder was examined through FEM contact analysis. A three dimensional modeling and analysis was carried out to survey the internal physics of this structure and to prove the accuracy of a computation compared to a measurement. After validation, a simple two dimensional model was built fur various parametric study considering the efficiency and speed of the computation. Several factors such as boundary conditions, a modeling boundary, mesh density and so on, were considered to obtain consistency with three dimensional analysis. An arc angle and a position of each holder boss were chosen as design parameters. A design of experiment was applied to find out an optimized design of the holder geometry. As a result, a guideline for holder boss design was suggested and main factors and their influence on stress concentration in the transducer horn were surveyed.

A New Framework of 6lowpan node for Neighboring Communication with Healthcare Monitoring Applications

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.281-286
    • /
    • 2009
  • The proposed technique uses cyclic frame structure, where three periods such as beacon period (BP), mesh contention access period (MCAP) and slotted period (SP) are in a data frame. This paper studies on a mechanism to allow communication nodes (6lowpan) in a PAN with different logical channel for global healthcare applications monitoring technology. The proposed super framework structure system has installed 6lowpan sensor nodes to communicate with each other. The basic idea is to time share logical channels to perform 6lowpan sensor node. The concept of 6lowpan sensor node and various biomedical sensors fixed on the patient BAN (Body Area Network) for monitoring health condition. In PAN (hospital area), has fixed gateways that received biomedical data from 6lowpan (patient). Each 6lowpan sensor node (patient) has IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analyze patient data from all over the globe by the internet service provider, with specific equipments i.e. cell phone, PDA, note book. The NS-2.33 result shows the performance of data transmission delay and data delivery ratio in the case of hop count in a PAN (Personal Area Networks).

  • PDF

Construction of Spatial Information Big Data for Urban Thermal Environment Analysis (도시 열환경 분석을 위한 공간정보 빅데이터 구축)

  • Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Protection Design and Lightning Zone Analysis for Unmanned Aerial Vehicle with Composite Wings (복합재 주익 무인항공기의 낙뢰보호 설계와 피격영역 해석)

  • Hee-chae Woo;Yong-Tae Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.302-312
    • /
    • 2023
  • This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.

Study for Effective Cooling of Ni-MH Battery Module Using Forced Air Flow (공기 유동에 따른 Ni-MH 배터리 모듈의 효과적인 냉각에 관한 연구)

  • Ahn, Chi-Yeong;Kim, Tae-Sin;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.253-260
    • /
    • 2011
  • In this study, computational simulation was performed for thermal management of modules consisting of 10 batteries. Simplified structure and equivalent thermal resistance network was applied to maintain the thermal properties. Verification test of the mesh were in progress to ensure the reliability of 2.6 mm in the narrow gap between the battery, resulting in at least three divided mesh between the shape of the grid was required. Type of air from rear of the module, type of air from top of the module and type of air from bottom of the module were applied and effective cooling methods are discussed based on the location of fan and air intake of the modules. Maximum temperature and temperature differences of modules that directly affect the performance of the module were compared, and also behavior of the fluid was confirmed by comparing the air flow. The best maximum temperature is shown type of air from bottom of the module to $40.27^{\circ}C$ and type of air from top of the module shows smallest temperature difference $0.73^{\circ}C$.