• Title/Summary/Keyword: mesh partitioning

Search Result 34, Processing Time 0.023 seconds

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

An Efficient Path-Based Multicast Algorithm in Wormhole-Routed Net works (웜홀 방식의 네트워크에서 경로전송을 기반으로 하는 효율적인 다중전송 알고리즘)

  • 김시관
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.20-28
    • /
    • 2001
  • In this paper, we present an efficient path-based multicast algorithm in wormhole-routed mesh networks. Our algorithm is based on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only one Hamiltonian path was used. Thus messages traverse mire horizontal channels than vertical ones, leading to earlier network congestion. By incorporating additional vertical Hamiltonian path as well as the horizontal Hamiltonian path, messages are distributed evenly as much as possible, thus making network evenly as much as possible, thus making network performance better. We prove that this algorithm is deadlock-free. And by extensive simulations, we show that this algorithm is superior to the previous ones by 15∼20%.

  • PDF

A Hierarchical User Interface for Large 3D Meshes in Mobile Systems (모바일 시스템의 대용량 3차원 메쉬를 위한 계층적 사용자 인터페이스)

  • Park, Jiro;Lee, Haeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • This paper introduces a user interface for large 3D meshes in mobile systems, which have limited memory, screen size and battery power. A large 3D mesh is divided into partitions and simplified in multi-resolutions so a large file is transformed into a number of small data files and saved in a PC server. Only selected small files specified by the user are hierarchically transmitted to the mobile system for 3D browsing and rendering. A 3D preview in a pop-up shows a simplified mesh in the lowest resolution. The next step displays simplified meshes whose resolutions are automatically controlled by the user interactions. The last step is to render a set of detailed original partitions in a selected range. As a result, while minimizing using mobile system resources, our interface enables us to browse and display 3D meshes in mobile systems through real-time interactions. A mobile 3D viewer and a 3D app are also presented to show the utility of the proposed user interface.

Sequential 3D Mesh Coding using Vertex Pedigree based on Wave Partitioning (파동분할 기반의 꼭지점 계보를 이용한 순차적 삼차원 메쉬 부호화)

  • 김태완;안정환;양창모;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.213-218
    • /
    • 2001
  • 본 논문에서는 파동분할(Wavepartitioning) 방식을 기반으로 꼭지점들간의 특징적인 관계(Vertex Pedigree)를 이용한 순차적(Sequential) 메쉬 부호화 방식을 제안한다. 파동분할 방식은 호수에 물방울이 퍼져 나가는 자연 원리를 이용하여 초기 삼각형의 주위에 삼각형을 덧붙여 가면서 하나의 SPB(Small Processing Block)을 만들어내는 방식이다. 이 방식을 이용하여 하나의 모델을 서로 독립적인 SPB로 분할하고, 각각의 SPB내에서 초기 삼각형을 중심으로 그것에 덧붙여진 삼각형에 의해 만들어진 원 또는 반원을 찾는다. 또한, 그 원주를 따라 순차적으로 꼭지점을 구하면 각각의 꼭지점들은 서로의 관계에 따라 일정한 패턴으로 늘어서게 되고, 이것을 이용하여 연결성 정보 없이 부가 정보만으로 모델을 순차적으로 무손실 부호화한다.

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.20-27
    • /
    • 2000
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way n-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and 3-D F-5 wing were investigated.

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.193-200
    • /
    • 1999
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an unpwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way N-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and a 3-D F-5 wing were investigated.

  • PDF

Application of Multi-Resolution Modeling in Collaborative Design (협업 설계에서의 다중해상도 모델링 응용)

  • Kim, Tae-Seong;Han, Jung-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper provides a framework for information assurance within collaborative design, based on a technique we call role-based viewing. Such role-based viewing is achieved through integration of multi-resolution geometry and security models. 3D models are geometrically partitioned, and the partitioning is used to create multi-resolution mesh hierarchies. Extracting a model suitable for access rights for individual designers within a collaborative design environment Is driven by an elaborate access control mechanism. 

Application of Multi-Resolution Modeling in Collaborative Design (협업 설계에서의 다중해상도 모델링 응용)

  • Kim, Taeseong;Han, Junghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Information assurance(IA) refers to methodologies to protect engineering information by ensuring its availability, confidentiality, integrity, non-repudiation, authentication, access control, etc. In collaborative design, IA techniques are needed to protect intellectual property, establish security privileges and create "need to know" protections on critical features. Aside from 3D watermarking, research on how to provide IA to distributed collaborative engineering teams is largely non-existent. This paper provides a framework for information assurance within collaborative design, based on a technique we call role-based viewing. Such role-based viewing is achieved through integration of multi-resolution geometry and security models. 3D models are geometrically partitioned, and the partitioning is used to create multi-resolution mesh hierarchies. Extracting an appropriately simplified model suitable for access rights for individual designers within a collaborative design environment is driven by an elaborate access control mechanism.

  • PDF

Algorithm for a Minimum Linear Arrangement(MinLA) of Lattice Graph (격자 그래프의 최소선형배열 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2024
  • This paper deals with the minimum linear arrangement(MinLA) of a lattice graph, to which an approximate algorithm of linear complexity O(n) remains as a viable solution, deriving the optimal MinLA of 31,680 for 33×33 lattice. This paper proposes a partitioning arrangement algorithm of complexity O(1) that delivers exact solution to the minimum linear arrangement. The proposed partitioning arrangement algorithm could be seen as loading boxes into a container. It firstly partitions m rows into r1,r2,r3 and n columns into c1,c2,c3, only to obtain 7 containers. Containers are partitioning with a rule. It finally assigns numbers to vertices in each of the partitioned boxes location-wise so as to obtain the MinLA. Given m,n≥11, the size of boxes C2,C4,C6 is increased by 2 until an increase in the MinLA is detected. This process repeats itself 4 times at maximum given m,n≤100. When tested to lattice in the range of 2≤n≤100, the proposed algorithm has proved its universal applicability to lattices of both m=n and m≠n. It has also obtained optimal results for 33×33 and 100×100 lattices superior to those obtained by existing algorithms. The minimum linear arrangement algorithm proposed in this paper, with its simplicity and outstanding performance, could therefore be also applied to the field of Very Large Scale Integration circuit where m,n are infinitely large.

A Study on the Wavelets on Irregular Point Set (불규칙 점 집합에서의 웨이브렛에 관한 연구)

  • Inn-Ho Jee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.69-74
    • /
    • 2023
  • In this paper we review techniques for building and analyzing wavelets on irregular point sets in one and two dimensions. In particular we focus on subdivision schemes and commutation. Subdivision means the skill that approximates the initial lines or mesh into a tender curve or a curved surface by continuous partitioning operation. The key to generalizing wavelet constructions to non-traditional settings is the use of generalized subdivision. The first generation setting is already connected with subdivision schemes, but they become even more important in the construction of second generation wavelets. Subdivision schemes provide fast algorithms, create a natural multi-resolution structure, and yield the underlying scaling functions and wavelets we seek.