본 논문은 세 개의 카메라로부터 얻어진 영상에서 표면 깊이 정보를 재구성하여 얼굴의 3차원 모델을 생성하는 효율적인 방법을 제안한다. 논문에서는 Trinocular 영상을 사용하여 binocular 영상 사용 시 발생하는 폐색 영역 문제와 깊이 해상도 한계를 개선하였다. 또한, MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) 유사도 측정 방법을 제안하여 영상 정합 시 발생하는 Boundary overreach 현상을 줄이고 정합의 정확도와 정밀도를 개선하였다. 이 방법은 정합 때 발생하는 중복 계산을 제거함으로써 계산 시간도 줄일 수 있다. 모델 생성 시에는 추출된 변위 정보를 2차원 보간에 의해 소수점 단위까지 확장하여 연속적인 표면 깊이 정보를 추출하였고, 이로부터 일정 간격의 초기 삼각형 매쉬 모델을 생성하였다. 또한 삼각형 매쉬 모델의 데이터 크기를 줄이기 위하여 사용자가 지정하는 오차 이내에서 같은 평면으로 근사화 되는 꼭지점을 병합하는 알고리듬을 제안하여 효율적인 얼굴 모델 생성이 이루어지도록 하였다.
본 연구에서는 복합재료 적층판에서 균열 생성 및 전파로 이루어지는 계면박리 현상을 모사하기 위하여 응집영역모델을 사용하였다. 응집영역모델을 고려한 유한요소해석을 수행하기 위하여 응집요소를 수식화하였으며, 상용유한요소 프로그램인 Abaqus의 사용자 정의 서브루틴 UEL로 구현하였다. 제안된 응집요소의 타당성과 유효성을 평가하기 위하여 복합재료 적층판의 이중외팔보(double cantilever beam) 시험과 ENF(end notched flexure) 시험결과와 유한요소해석 결과를 비교하였다. 해석 결과는 거시적인 하중-변위 곡선을 비교적 잘 예측하였다. 또한 응집요소를 이용한 유한요소해석시 탄성계수와 응집요소의 크기가 구조물의 하중-변위 곡선에 미치는 영향을 수치적으로 연구하였다. 균열 전파 경로의 격자 의존성을 최소화하고 하중-변위 곡선에 나타나는 지그-재그 현상을 제거하기 위하여 균열 선단에서 충분히 작은 응집요소가 사용되어야 한다.
Multi-nesting grid system을 이용한 한국해양연구원의 해일모델을 해일고 산출에 사용하기 위해 검증하였다. 다양한 수치실험은 2003년 9월 내습한 태풍 매미를 기준으로 이루어졌다. 이 태풍해일모델의 성능을 알아보기 위해 조석검증을 비롯하여 개방경계조건, 격자 크기 그리고 태풍의 진로 등에 대한 일련의 수치실험이 실시되었다. 본 연구에서 기상입격자료인 해면기압장과 바람장은 CE wind 모델로 계산하였다. 총 11개 조위관측소의 1분 간격 조위자료와 모델 결과를 비교하였으며, 해일고를 성공적으로 재현하였다. 이러한 실험들은 정밀한 해일고 산출에 있어 기상자료의 중요성과 상세정밀격자의 필요성을 강조하기 위한 것이다. 이 태풍해일 모델은 보다 세밀한 검증과정을 거친다면 해일고 예측을 위해 상시 운용될 수 있다고 사료된다.
이온빔을 이용한 리소그래피의 경우 미크론 이하의 미세구조를 형성할 수 있는 유용한 수단으로서 방사광 X-선과 함께 주목을 받고 있으며, 이와 같은 미세구조 제작은 MEMS (Micro Electro-Mechanical System) 개발에 있어서 매우 중요하다. 그러나 이온빔을 이용한 리소그래피에 대한 연구가 많이 이루어져 있지 않은 상태이다. MeV급 양정사 빔을 이용한 리소그래피의 가능성을 확인하기 위하여 기본적인 실험을 수행하였으며, 최적 이온빔 조사 조건 및 최적 현상 조건을 도출하였다. Resist로는 PMMA를 사용하였으며, 1.8 MeV 양성자 빔을 사용하여 50$\mu\textrm{m}$ 깊이의 구조물을 만들었다. 1.8MeV 양성자 빔의 조사선량이 7x1013ions/cm2 이상이 되면 PMMA 내부에 기포가 형성되므로 적정 조사선량을 4x1013 ions/cm2으로 결정하였다. 또한 선량을 4x1013ions/cm2 으로 고정하고 선량률을 변화시켜주면 선량률이 8x1011ions/cm2S 일 때부터 시료에 기포나 터짐 현상 등의 문제가 발생하였으며 5x1010~~1x1010ions/cm2s 의 선량률이 조사시간, 결함측면에서 가장 적합한 영역임을 알 수 있었다. 현상제로는 20% morpholine, 5% etanolamine 60% diethylenglykol-monobutylether, 15% 증류수를 혼합하여 사용하였다. 현상 온도를 30~5$0^{\circ}C$로 변화시켜서 현상을 한 결과, 4$0^{\circ}C$에서 현상 소요시간은 1시간 이내이며 SEM으로 관찰된 표면의 상태도 제일 양호한 결과를 보였다. 82 mesh 밀도, 선굵기 60$\mu\textrm{m}$, 크기 20x20 mm인 백금 망을 마스크로 사용하여 실제 3차원 미세구조를 제작하여 보았다. 그림 1에서 제작된 구조물의 SEM 사진을 보여주었으며, 식각된 면의 조도가 매우 뛰어나며 모서리의 직각성도 우수함을 확인할 수 있다. 이와 같이 도출된 시험 조건을 기초로 하여 리소그래피 후에 전기 도금을 이용한 금속 몰드 제작 및 이온빔 리소그래피 장점을 최대한 살릴수 있는 미세구조 제작에 대한 연구를 계속 추진할 계획이다.
본 논문은 고분자 전해질 연료전지 해석 방법과 유전자 알고리즘을 결합하여 연료전지 유로 최적화를 이끌어 내는 방법을 연구한다. 종래의 해석 방법은 연료전지를 하나씩 설계하여 해석 결과를 비교하였다. 하지만, 경계조건과 물성치를 설정하는 부분, 메시 작성 작업 등 많은 시간이 소요되며, 정확성 또한 떨어져서 비효율적이다. 본 논문에서 제안하는 유전자 알고리즘을 사용하면 자동으로 채널 구조에 변화를 줄 수 있어서 다양한 크기의 연료지전 해석 결과를 얻을 수 있다. 이는 최적화 과정을 통해 최대 성능의 결과를 알 수 있게 되며, 해석 결과 값에 따라 최적의 채널 구조를 찾을 수 있다.
이방성 복합재료 적층판에서는 섬유의 배열방향에 따라 탄성계수가 변하므로 속도가 섬유의 방향성에 의존하게 된다. 등방성 속도를 기준으로 도달 시간차를 측정하는 전통적인 2차원 음향방출 위치표정 방법을 그대로 적용할 경우 위치표정의 오차가 매우 커지며, 그 과정이 복잡해지는 것을 피할 수 없다. 본 연구에서는 위치표정의 대상이 되는 관심영역(ROI)를 마치 유한요소법에서 사용하는 메쉬(mesh)처럼 적절한 크기의 정사각형 요소로 나눈 뒤, 각각을 가상의 AE 발생원으로 간주하였으며, 모든 요소에 대해 이방성을 고려한 속도를 기준으로 각 센서와의 도달시간차를 구하였다. 실험적인 검증을 위하여 알루미늄 박판 및 복합재료 적층판에 대해 $0^{\circ}$ 부터 $90^{\circ}$까지의 속도를 측정하고 위치표정을 실시함으로써 이방성 적층복합재로 이루어진 실제 구조물에서의 실시간 활용가능성을 확인하였다.
Bypass line과 Catalyst를 공간적으로 결합한 Bypass 일체형 탈질설비를 제안하였다. 탈질설비 내부에 설치되는 Bypass의 개폐장치의 형태에 따른 Catalyst로의 유동 변화를 확인하기 위하여 상용프로그램인 Ansys Fluent를 사용하여 탈질설비를 모델링하고 시뮬레이션을 구성하였다. 탈질설비 내의 Catalyst로 인한 계산시간과 Mesh의 수를 줄이기 위해 Porous media방식으로 Catalyst를 모델링하였다. Catalyst로의 입구각도와 Bypass 개폐장치의 크기를 변화시키면서 시뮬레이션을 수행하고 시뮬레이션의 결과로 Catalyst로의 유동 평균속도와 균일도의 변화를 확인하였다.
다공성 분리막은 입자성 물질을 제거하는데 산업적으로 다양하게 응용되고 있다. 기존 다공성 분리막 제작 방법과 다르게, 용액퍼짐 상분리법은 매우 간단하게 기공을 형성할 수 있다. 먼저 지지층으로 메쉬 위에 물을 적신 후, 물과 혼합되지 않은 용매에 폴리설폰 용액을 흘려준다. 이때 물과 혼합되지 않은 용매는 쉽게 기화되어 폴리설폰은 얇은 막으로 만들어지게 된다. 기공을 형성하기 위해 폴리설폰 용액에 물과 혼합할 수 있는 물질을 넣게 되면, 넣어주는 농도 비율에 따라 기공크기를 조절할 수 있게 된다. 막의 두께는 쉽게 용액의 농도로 조절이 된다. 다공성 분리막은 메쉬의 형성을 그대로 유지하고 있어 3차원 구조체를 형성하는데 매우 유용하다. 본 연구에서 제시된 용액 퍼짐 상분리법은 매우 낮은 생산단가와 쉬운 공정조절에 의해 기존 분리막에 비해 높은 가격경쟁력을 가질 수 있는 특징을 보이고 있다.
본 논문에서는 위급한 상황(예 : COVID-19)에서 바이러스 검사를 빠르게 진행하기 위한 그래프 기반 사용자 경로 제어와 이것을 도시 맵에서 시뮬레이션을 할 수 있는 프레임워크를 제안한다. 가상환경에서 많이 활용되는 길찾기(Pathfinding) 알고리즘인 A*나 네비게이션 메쉬 자료구조는 정해진 정적 이동 경로만을 안내하기 때문에 가상환경에서 에이전트를 제어하는 CS(Computer science)문제에 적용할 할 경우 효율적이다. 하지만, 실제 COVID-19 환경에 적용하여 문제를 풀기에는 충분하지 않다. 특히, 빠른 바이러스 검사를 받기 위해서는 짧은 거리만을 이용하는 게 아닌, 실제 도로 교통상황, 병원의 크기, 환자 이동 수, 환자 처리 시간 등 고려해야 할 상황들이 많다. 본 논문에서는 위에서 언급한 다양한 속성들과 이를 이용한 최적화 함수를 모델링하여, 실제 도시 맵에서 바이러스 검사를 빠르고 효율적으로 처리할 수 있고, 다양한 상황을 디지털 트윈 방식으로 시뮬레이션을 할 수 있는 프레임워크를 제안한다.
This study quantitatively evaluated size selectivity for three netting shapes (T0; regular, T45, T90) and hanging ratio (35%, 70%) of T0 netting used for trawl codend. The size selectivity experiment was performed in a tank using a cube experimental model with a length of 50 cm on one side and 389 experimental individuals, jack mackerel (Trachurus japonicus). In the selectivity analysis, a selectivity curve was created based on the selection ratio using a logistic function, and the 25%, 50%, and 70% selection length and selection range (SR) were obtained. The T0 netting was 19.54 cm when the 50% selective length, which is a selectivity evaluation index, had a hanging ratio of 35%, a selection range of 0.51 cm, and 22.70 cm and 3.08 cm for the hanging ratio of 70%. The T45 netting was 24.34 cm and 2.13 cm, and the T90 netting was 23.51 cm and 2.84 cm. The results of the T45 netting and the T90 netting are similar, and the 50% selection length and selection range were relatively larger than the T0 netting. There was a significant difference in the correlation between the circumference of the inner circle of the mesh by the shape of the netting and the body girth of the experimental individual (Pearson test, r = 0.86, p < 0.05). There was no significant difference in the correlation between the selection ratio by the T0 netting, T45 netting, and T90 netting with a 70% hanging ratio (one-way ANOVA, p > 0.05). The results of this study showed that selectivity such as T45 netting and T90 netting appeared when the hanging ratio, which maximizes the area of T0 netting, was maintained at 70%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.