• Title/Summary/Keyword: mesangial cells

Search Result 55, Processing Time 0.033 seconds

Immortalization of Rat Kidney Glomerular Mesangial Cell and Its Coculture with Glomerular Epithelial Cell

  • Toshinobu Kida;Sachi Fujishima;Masatoshi Matsumra;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2000
  • Mesangial cell has several key roles in thee control of glomerular function: it partocipates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitble cell lines have established yet. We here reported the immortalization of rat kidney glomeruar mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The reslts showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial dells was suppressed by epithelial cell, but the growth of epithelisl cells was enhanced by mesangial cells. Moreover, Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.

  • PDF

Effects of Yeonryunggobondan and Palmijihwangtang on the Population Doubling Number and the Population Time in Rat Fibroblasts, Heart-Endothelial Cells, Mesangial Cells (연령고본단 및 팔미지황탕이 Rat의 피부섬유아세포, 사구체 메산지움세포 및 혈관내피세포의 노화 지연에 미치는 영향)

  • 박영준;안영민;안세영;두호경
    • The Journal of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • Objectives: This paper is to investigate what effects Yeonryunggobondan and Palmijihwangtang have on postponing senility in rat fibroblasts, heart-endothelial cells, mesangial cells. Methods: 1. In vitro Yeonryunggobondan and Palmijihwangtang controlled the growth of fibroblasts, heart-endothelial cells, mesangial cells, extended the PDT of them. 2. After feeding rats the drugs for 2 months, the fibroblasts, heart-endothelial cells, mesangial cells were cultured. Results: 1) In fibroblasts the PDN was incresed and the PDT was decreased at passage-1, 2 by Yeonryunggobondan and Palmijihwangtang(p<0.05). 2) In heart-endothelial cells the PDN was incresed and the PDT was decreased at passage 8 by Yeonryunggobondan and Palmijihwangtang(p<0.05). 3) In mesangial cells the PDN was increased and the PDT was decreased at passage 4 by Yeonryunggobondan, the PDN was incresed at passage 4 by Palmijihwangtang(p<0.05). Conclusions: It is concluded that both Yeonryunggobondan and Palmijihwangtang maybe be conductive to protect and delay the senescence of rat fibroblasts, heart-endothelial cells, mesangial cells.

  • PDF

Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells

  • Kim, Nam-Su;Ju, Sung-Min;Kwon, Young-Dal;Shin, Byung-Cheul;Ahn, Kyoo-Seok;Kim, Sung-Hoon;Song, Yung-Sun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1664-1671
    • /
    • 2006
  • Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Cytotoxicity of cisplatin was detected in rat mesangial cells and the value of $IC_{50}$ is about 20 ${\mu}M$. The treatment of cisplatin to rat mesangial cells showed the apoptotic bodies and DNA fragmentation. The activation of caspase-3, -8, and -9 and proteolytic cleavage of PARP were observed in the rat mesangial cells treated time-dependently with cisplatin. The activation of ERK, p38 and JNK was also observed in the apoptosis induced by cisplatin in rat mesangial cells. The ethanol extract of Bojungbangam-tang (EBJT), a new hergal prescription composed of nine crude drugs, inhibited cisplatin-induced apoptosis in rat mesangial cells. EBJT reduced sub-G1 peak (apoptotic peak) in cisplatin-treated rat mesangial cells. The cisplatin-induced ERK and JNK activation in rat mesangial cells were blocked by EBJT, but EBJT had no effect on p38 activation. Taken together, these results con suggest that EBJT prevents cisplatin-induced apoptotic cell death in rat mesangial cells through inhibition of ERK and JNK activation.

The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells (Mesangial 세포에서 고포도당에 의한 IGFs 분비와 PKC 및 산화성 스트레스와의 관련성에 관한 연구)

  • Park, Su-hyun;Heo, Jung-sun;Kang, Chang-won;Han, Ho-jae
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.497-505
    • /
    • 2004
  • The proliferation of mesangial cells has been associated with the development of diabetic nephropathy. The cell proliferation has been regulated by diverse growth factors. Among them, insulin like growth factors(IGFs) are also involved in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion and the relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in the mesangial cells. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. High glucose(25 mM) increased IGF-I and IGF-II secretion. High glucose-induced increase of IGF-I and IGF-II secretion were blocked by taurine($2{\times}10^{-3}$ M), N-acetyl cystein(NAC, $10^{-5}M$), or GSH($10^{-5}M$) (antioxidants), suggesting the role of oxidative stress. High glucose-induced secretion of IGF-I and IGF-II were blocked by H-7, staurosporine, and bisindolylmaleimide I(protein kinase C inhibitors). On the other hand, high glucose also increased lipid peroxide (LPO) formation in a dose dependent manner. In addition, high glucoseinduced stimulation of LPO formation was blocked by PKC inhibitors. These results suggest that PKC is responsible for the increase of oxidative stress in the action of high glucose-induced secretion of IGF-I and IGF-II in mesangial cells. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via PKCoxidative stress signal pathways in mesangial cells.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

The regulatory mechanism of insulin like growth factor secretion by high glucose in mesangial cell: involvement of cAMP (Mesangial 세포에서 고포도당에 의한 insulin-like growth factor의 분비조절기전에 관한 연구: cAMP와의 관련성)

  • Heo, Jung-sun;Kang, Chang-won;Han, Ho-jae;Park, Soo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.563-571
    • /
    • 2003
  • Dysfunction of mesangial cells has been contributed to the onset of diabetic nephropathy. Insulin like growth factors (IGFs) are also implicated in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion in the mesangial cells. Furthermore, the relationship between cAMP and high glucose on the secretion of IGFs was not elucidated. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. Glucose increased IGF-I secretion in a time- (>8 hr) and dose- (>15 mM) dependent manner (p<0.05). Stimulatory effect of high glucose on IGF-I secretion is predominantly observed in 25 mM glucose (high glucose), while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. High glucose also increased IGF-II secretion. The increase of IGF-I and IGF-II secretion is not mediated by osmotic effect, since mannitol and L-glucose did not affect IGF-I and IGF-II secretion. 8-Br-cAMP mimicked high glucose-induced secretion of IGF-I and IGF-II. High glucose-induced stimulation of IGF-I and IGF-II secretion was blocked not by pertussis toxin but by SQ 22536 (adenylate cyclase inhibitor). Rp-cAMP (cAMP antagonist), and myristoylated protein kinase A (PKA) inhibitor amide 14-22 (protein kinase A inhibitor). These results suggest that cAMP/PKA pathways independent of Gi protein may mediate high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. Indeed, glucose (>15 mM glucose) increased cAMP formation. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via cAMP/PKA pathway in mesangial cells.

Ginsenosides Protect the High Glucose-induced Stimulation of IGFs in Mesangial Cells (Mesangial 세포에서 고포도당에 의해 유도되는 insulin-like growth factor 분비 촉진작용에 대한 ginsenosides의 차단 효과)

  • Bae, Chun-Sik;Lim, Do-Seon;Yoon, Byeong-Cheol;Jeong, Moon-Jin;Yoon, Kyung-Chul;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Panax ginseng C. A. MEYER is one of the most widely used herbal medicines in the Asian countries and has diverse functions including anti-diabetic action. The dysfunctions of mesangial cells in hyperglycemic conditions are implicated in the development of diabetic nephropathy. Insulin-like growth factors (IGFs) are also associated with the onset of diabetic nephropathy. Thus, we examined the effect of ginsenosides against high glucose-induced dysfunction of primary cultured rat mesangial cells. In the present study, high glucose increased IGF-I and IGF-II secretion in mesangial cells. Ginsenoside total saponin (GTS) prevented high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. In addition, GTS prevented high glucose-induced increase of lipid peroxide formation and decrease of GSH contents. GTS also ameliorates high glucose-induced increase of arachidonic acid release and decrease of prostaglandin $E_2$. In conclusion, GTS prevented high glucose-induced dysfunction of mesangial cells via inhibition of oxidative stress and arachidonic acid pathways.

Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells (Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과)

  • Ha, Hun-Joo;Park, Young-Mee;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.323-331
    • /
    • 1995
  • Monocyte/macrophage infiltration is the well known initial features associated with the development of glomerular disease including non-immune mediated nephropathy. Tumor necrosis factor ${\alpha}(TNF{\alpha})$, a cytokine produced primarily by monocyte/macrophage, exhibits similar effects as observed at the initial stages and during the progression of glomerular injury. Because the mesangial cells are target cells for glomerular injury, the present study examined the effect of $TNF{\alpha}$ on glomerular mesangial cell membrane lipid peroxidation as an index of cytotoxicity attributing to $TNF{\alpha}$. Primary culture of rat mesangial cell was established by incubation of glomeruli isolated from male Sprague-Dawley rat kidneys utilizing a standard sieving method. The levels of lipid peroxides in the mesangial cells were quantitated by malondialdehyde- thiobarbituric acid adduct formation. During an 8 hour incubation at $37^{\circ}C$, $TNF{\alpha}$ at 10 to 10,000 units/ml increased the levels of lipid peroxides dose dependently. Western blot analysis demonstrated that a short thermal stress induced heat shock response and the synthesis of heat shock protein 70(hsp70) in this mesangial cells. Further, this induction of hsp 70 prevented increase of lipid peroxides in the mesangial cells exposed to $TNF{\alpha}$. These data suggest that $TNF{\alpha}-induced$ lipid peroxidation in the mesangial cells may have pathophysiological relevance to glomerular injury and prior induction of heat shock response may play a role in the cellular resistance against $TNF{\alpha}-induced$ glomerular injury.

  • PDF

The Effects of Dangguijakyak-san and Wuelbigachul-tang on Mesangial Cell Proliferation and on ICAM-1 and ${\beta}1-integrin$ Expression (당귀작약산, 월비가출탕이 Mesangial Cell 증식과 ICAM-l 및 ${\beta}1-integrin$ 발현에 미치는 영향)

  • 장원만;안세영;두호경
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.140-148
    • /
    • 2000
  • Objectives : This experiment was conducted to investigate the suppressive effects of Dangguijakyak-san and Wuelbigachul-tang on the expression of ICAM-l and ${\beta}1-integrin$, which mediate cell-cell or cell-matrix interaction, and on the proliferation of mesangial cells. Methods : After in vitro culturing of human mesangial cells with the supernatant which was obtained from the monocytes separated from human blood with Con-A, hydrocortisone, Dangguijakyak-san and Wuelbigachul-tang respectively, we evaluated suppressive effects by measuring the mesangial cell surface enzyme immunoassay or flow cytometry. Results : The results are summarized as follows: 1. Dangguijakyak-san and Wuelbigachul-tang induced marked suppressive effects on the mesangial cell proliferation in the 50% and 25% supernatant concentration stimulating experiments, but hydrocortisone had little effect in these experiments. 2. Dangguijakyak-san and Wuelbigachul-tang induced marked suppressive effects on ICAM-l and ${\beta}1-integrin$ expression, but were less effective than hydrocortisone was. Conclusions : Based on these results, Dangguijakyak-san and Wuelbigachul-tang were found to be effective in the suppression of mesangial cell proliferation and in ICAM-1 and ${\beta}1-integrin$ expression. Further in vitro investigations as conducted above, with the in vivo experiments reflected, may prove that Dangguijakyak-san and Wuelbigachul-tang contribute to the prevention of the glomerular disease.

  • PDF