Browse > Article

The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells  

Park, Su-hyun (Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University)
Heo, Jung-sun (Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University)
Kang, Chang-won (Bio-safety Research Institute, College of Veterinary Medicine, Chonbuk National University)
Han, Ho-jae (Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University)
Publication Information
Korean Journal of Veterinary Research / v.44, no.4, 2004 , pp. 497-505 More about this Journal
Abstract
The proliferation of mesangial cells has been associated with the development of diabetic nephropathy. The cell proliferation has been regulated by diverse growth factors. Among them, insulin like growth factors(IGFs) are also involved in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion and the relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in the mesangial cells. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. High glucose(25 mM) increased IGF-I and IGF-II secretion. High glucose-induced increase of IGF-I and IGF-II secretion were blocked by taurine($2{\times}10^{-3}$ M), N-acetyl cystein(NAC, $10^{-5}M$), or GSH($10^{-5}M$) (antioxidants), suggesting the role of oxidative stress. High glucose-induced secretion of IGF-I and IGF-II were blocked by H-7, staurosporine, and bisindolylmaleimide I(protein kinase C inhibitors). On the other hand, high glucose also increased lipid peroxide (LPO) formation in a dose dependent manner. In addition, high glucoseinduced stimulation of LPO formation was blocked by PKC inhibitors. These results suggest that PKC is responsible for the increase of oxidative stress in the action of high glucose-induced secretion of IGF-I and IGF-II in mesangial cells. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via PKCoxidative stress signal pathways in mesangial cells.
Keywords
Insulin-like growth factors; high glucose; PKC; oxidative stress; mesangial cell; kidney;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Babazono, T., Kapor-Drezgic, J., Dlugosz, J. A. and Whiteside, C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes. 1998, 47, 668-676
2 Gooch, J. L., Tang, Y., Ricono, J. M. and Abboud, H. E. Insulin-like growth factor-I induces renal cell hypertrophy via a calcineurin-dependent mechanism. J. Biol. Chem. 2001, 276, 42492-42500
3 Iori, E., Marescotti, M. C., Vedovato, M., Ceolotto, G., Avogaro, A., Tiengo, A., Del Prato, S. and Trevisan, R. In situ protein Kinase C activity is increased in cultured fibroblasts from Type 1 diabetic patients with nephropathy. Diabetologia. 2003, 46, 524-530
4 Kumar, A., Hawkins, K. S., Hannan, M. A. and Ganz, M. B. Activation of PKC-beta(I) in glomerular mesangial cells is associated with specific NF-kappaB subunit translocation. Am. J. Physiol. Renal. Physiol. 2001, 281, F613-F619
5 Lee, C. Y. and Henricks, D. M. Comparisions of various acidic treatments of bovine serum on insulinlike growth factor-I immunoreactive and binding activity. J. Endocrinol, 1990, 127, 139-148
6 Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A. Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404, 787-790
7 Obrosova, I. G., Fathallah, L., Liu, E. and Nourooz- Zadeh, J. Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid. Free. Radic. Biol. Med. 2003, 34, 186-195
8 Schleicher, E. D. and Olgemoller, B. Glomerular changes in diabetes mellitus. Eur. J. Clin. Chem. Clin. Biochem. 1992, 30, 635-640
9 Sheetz, M. J. and King, G. L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002, 288, 2579-2588
10 Steff, M.W., Osterby, W. R., Chavers, B. and Mauer, S. M. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1998, 38, 1077-1081
11 Tack, I., Elliot, S. J., Potier, M., Rivera, A., Striker, G. E. and Striker, L. J. Autocrine activation of the IGF-I signaling pathway in mesangial cells isolated from diabetic NOD mice. Diabetes. 2002, 51, 182-188
12 Werner, H., Shen-Orr, Z., Stannard, B., Burguera, B., Roberts, C. T. Jr. and LeRoith, D. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney. Diabetes. 1990, 39, 1490-1497
13 West, I. C. Radicals and oxidative stress in diabetes. Diabet Med. 2000, 17, 171-180
14 Bowsher, R. R., Lee, W. H., Apathy, J. M., O'Brien,P. J., Ferguson, A. L. and Henry, D. P. Measurement of insulin-like growth factor-II in physiological fluids and tissues. I. An improved extraction procedure and radioimmunoassay for human and rat fluids. Endocrinology. 1991, 128, 805-814
15 Derubertis, F. R. and Craven, P. A. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994, 43, 1-8
16 Ohkawa, H., Ohishi, N. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351-358
17 Gronbaek, H., Nielsen, B., Frystyk, J., Flyvbjerg, A. and Orskov, H. Effect of lanreotide on local kidney IGF-I and renal growth in experimental diabetes in the rat. Exp. Nephrol. 1996, 4, 295-303
18 Heo, Y. R., Kang, C. W. and Cha, Y. S. L-Carnitine changes the levels of insulin-like growth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J. Nutr. Sci. Vitaminol. 2001, 47, 329-334
19 Hoog, A., Sandberg-Nordqvist, A. C., Abdel-Halim, S. M,, Carlsson-Skwirut, C., Guenifi, A., Tally, M., Ostenson, C. G., Falkmer, S., Sara, V. R., Efendic, S., Schalling, M. and Grimelius, L. Increased amounts of a high molecular weight insulin-like growth factor II (IGF-II) peptide and IGF-II messenger ribonucleic acid in pancreatic islets of diabetic Goto-Kakizaki rats. Endocrinology. 1996, 137, 2415-2423
20 Tuttle, K. R. and Anderson, P. W. A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition. Am. J. Kidney Dis. 2003, 42, 456-465
21 Abou-Seif, M. A. and Youssef, A. A. Oxidative stress and male IGF-1, gonadotropin and related hormones in diabetic patients. Clin. Chem. Lab. Med. 2001, 39, 618-623
22 Mathews, L. S., Norstedt, G. and Palmiter, R. D. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc. Natl. Acad. Sci. USA. 1986, 83, 9343-9347
23 Studer, R. K, Craven, P. A. and DeRubertis, F. R. Antioxidant inhibition of protein kinase C-signaled increases in transforming growth factor-beta in mesangial cells. Metabolism. 1997, 46, 918-925
24 Koya, D., Jirousek, M. R., Lin, Y. W., Ishii, H., Kuboki, K. and King, G. L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest. 1997, 100, 115-126
25 Schwander, J. C., Hauri, C., Zapf, J. and Froesch, E. R. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology. 1983, 113, 297-305
26 Binoux, M. The IGF system in metabolism regulation. Diabetes Metab. 1995, 21, 330-337
27 Flyvbjerg, A., Landau, D., Domene, H., Hernandez, L., Gronbaek, H. and LeRoith, D. The role of growth hormone, insulin-like growth factors (IGFs), and IGFbinding proteins in experimental diabetic kidney disease. Metabolism. 1995, 44, 67-71
28 Craven, P. A., Davidson, C. M. and DeRubertis, F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990, 39, 667-674
29 Ha, H., Yu, M. R., Choi, Y. J, Kitamura, M. and Lee, H. B. Role of high glucose-induced nuclear factorkappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J. Am. Soc. Nephrol. 2002, 13, 894-902
30 Zhuang, H. X., Wuarin, L., Fei, Z. J. and Ishii, D. N. Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with noninsulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy. J. Pharmacol. Exp. Ther. 1997, 283, 366-374
31 Agardh, C. D., Stenram, U., Torffvit, O. and Agardh, E. R. Effects of inhibition of glycation and oxidative stress on the development of diabetic nephropathy in rats. J. Diabetes Complications. 2002, 16, 395-400
32 Feld, S. and Hirschberg, R. Growth hormone, the insulin-like growth factor system, and the kidney. Endocr Rev. 1996, 17, 423-480
33 Kurzawa, R., Glabowski, W., Baczkowski, T. and Brelik, P. Evaluation of mouse preimplantation embryos exposed to oxidative stress cultured with insulin-like growth factor I and II, epidermal growth factor, insulin, transferrin, and selenium. Reprod. Biol. 2002, 2, 143-162
34 Rossert, J., Terraz-Durasnel, C. and Brideau, G. Growth factors, cytokines, and renal fibrosis during the course of diabetic nephropathy. Diabetes. Metab. 2000, 26, S16-S24
35 Daughaday, W. H. and Rotwein, P. Insulin-like growth factors I and II. Peptide messenger ribonucleic acid and gene structure serum, and tissue concentrations. Endocr. Rev. 1989, 10, 68-91
36 Catherwood, M. A., Powell, L. A., Anderson, P., McMaster, D., Sharpe, P. C. and Trimble, E. R. Glucose-induced oxidative stress in mesangial cells. Kidney Int. 2002, 61, 599-608
37 Berfield, A. K., Spicer, D. and Abrass, C. K. Insulinlike growth factor I (IGF-I) induces unique effects in the cytoskeleton of cultured rat glomerular mesangial cells. J. Histochem. Cytochem. 1997, 45, 583-593
38 Kimura, M., Ishizawa, M., Miura, A., Itaya, S., Kanoh, Y., Yasuda, K., Uno, Y., Morita, H. and Ishizuka, T. Platelet protein kinase C isoform content in type 2 diabetes complicated with retinopathy and nephropathy. Platelets. 2001, 12, 138-143
39 Miyatake, N., Shikata, K., Wada, J., Sugimoto, H., Takahashi, S. and Makino, H. Differential distribution of insulin-like growth factor-1 and insulin-like growth factor binding proteins in experimental diabetic rat kidney. Nephron. 1999, 81, 317-323
40 Wardle, E. N. How does hyperglycaemia predispose to diabetic nephropathy? QJM. 1996, 89, 943-951
41 Inoguchi, T., Li, P., Umeda, F., Yu, H. Y., Kakimoto, M., Imamura, M., Aoki, T., Etoh, T., Hashimoto, T., Naruse, M., Sano, H., Utsumi, H. and Nawata, H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase Cdependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000, 49, 1939-1945
42 Yakar, S., Wu, Y., Setser, J. and Rosen, C. J. The role of circulating IGF-I: lessons from human and animal models. Endocrine. 2002, 19, 239-248
43 Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z. and Ha, H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 2003, 14, S241-S245
44 Spranger, J., Buhnen, J., Jansen, V., Krieg, M., Meyer-Schwickerath, R., Blum, W. F., Schatz, H. and Pfeiffer, A. F. Systemic levels contribute significantly to increased intraocular IGF-I, IGF-II and IGF-BP3 [correction of IFG-BP3] in proliferative diabetic retinopathy. Horm. Metab. Res. 2000, 32, 196-200
45 De La Puente, A., Goya, L., Ramos, S., Martin, M. A., Alvarez, C., Escriva, F. and Pascual-Leone, A. M. Effects of experimental diabetes on renal IGF/IGFBP system during neonatal period in the rat. Am. J. Physiol. Renal. Physiol. 2000, 279, F1067-F1076
46 Elliot, S. J., Striker, L. J., Hattori, M., Yang, C. W., He, C. J., Peten, E. P. and Striker, G. E. Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology. 1993, 133, 1783-1788