• 제목/요약/키워드: merozoite surface protein-1(MSP-1)

검색결과 12건 처리시간 0.03초

Genetic diversity in merozoite surface protein(MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran

  • Heidari Aliehsan;Keshavarz Hossein;Rokni Mohammad B.;Jelinek Tomas
    • Parasites, Hosts and Diseases
    • /
    • 제45권1호
    • /
    • pp.59-63
    • /
    • 2007
  • Merozoite surface protein-1(MSP-1) and merozoite surface protein-2(MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorph isms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.

Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

  • Sawaswong, Vorthon;Simpalipan, Phumin;Siripoon, Napaporn;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • 제53권2호
    • /
    • pp.177-187
    • /
    • 2015
  • Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles co-existed, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

Evolution of Genetic Polymorphisms of Plasmodium falciparum Merozoite Surface Protein (PfMSP) in Thailand

  • Kuesap, Jiraporn;Chaijaroenkul, Wanna;Ketprathum, Kanchanok;Tattiyapong, Puntanat;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • 제52권1호
    • /
    • pp.105-109
    • /
    • 2014
  • Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.

Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border

  • Zhou, Xia;Tambo, Ernest;Su, Jing;Fang, Qiang;Ruan, Wei;Chen, Jun-Hu;Yin, Ming-Bo;Zhou, Xiao-Nong
    • Parasites, Hosts and Diseases
    • /
    • 제55권5호
    • /
    • pp.473-480
    • /
    • 2017
  • Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene ($PvMSP1_{42}$) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that $PvMSP1_{42}$ has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of $PvMSP1_{33}$. Our results also demonstrated that $PvMSP1_{42}$ of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.

Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii

  • Kim, Seon-Hee;Bae, Young-An;Seoh, Ju-Young;Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.255-267
    • /
    • 2017
  • Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

Plasmodium falciparum Genotype Diversity in Artemisinin Derivatives Treatment Failure Patients along the Thai-Myanmar Border

  • Congpuong, Kanungnit;Hoonchaiyapoom, Thirasak;Inorn, Kornnarin
    • Parasites, Hosts and Diseases
    • /
    • 제52권6호
    • /
    • pp.631-637
    • /
    • 2014
  • Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivatives combination therapy. P. falciparum isolates were collected prior to treatment from 3 groups of patients; 50 cases of treatment failures, 50 recrudescences, and 56 successful treatments. Genotyping of the 3 polymorphic markers was analyzed by nested PCR. The distribution of msp-1 alleles was significantly different among the 3 groups of patients but not the msp-2 and glurp alleles. The allelic frequencies of K1 and MAD20 alleles of msp1 gene were higher while RO33 allele was significantly lower in the successful treatment group. Treatment failure samples had a higher median number of alleles as compared to the successful treatment group. Specific genotypes of msp-1, msp-2, and glurp were significantly associated with the treatment outcomes. Three allelic size variants were significantly higher among the isolates from the treatment failure groups, i.e., $K1_{270-290}$, $3D7_{610-630}$, $G_{650-690}$, while 2 variants, $K1_{150-170}$, and $3D7_{670-690}$ were significantly lower. In conclusion, the present study reports the differences in multiplicity of infection and distribution of specific alleles of msp-1, msp-2, and glurp genes in P. falciparum isolates obtained from treatment failure and successful treatment patients following artemisinin derivatives combination therapy.

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.

PCR-RFLP for Rapid Subtyping of Plasmodium vivax Korean Isolates

  • Kang, Jung-Mi;Lee, Jinyoung;Kim, Tae Im;Koh, Eun-Ha;Kim, Tong-Soo;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.159-165
    • /
    • 2017
  • Vivax malaria reemerged in Korea in 1993 and the outbreak has been continued with fluctuating numbers of annual indigenous cases. Understanding the nature of the genetic population of Plasmodium vivax circulating in Korea is beneficial for the knowledge of the nationwide parasite heterogeneity and in the implementation of malaria control programs in the country. Previously, we analyzed polymorphic nature of merozoite surface protein-1 (MSP-1) and MSP-$3{\alpha}$ in Korean P. vivax population and identified the Korean P. vivax population has been diversifying rapidly, with the appearance of parasites with new genetic subtypes, despite the recent reduction of the disease incidence. In the present study, we developed simple PCR-RFLP methods for rapid subtyping of MSP-1 and MSP-$3{\alpha}$ of Korean P. vivax isolates. These PCR-RFLP methods were able to easily distinguish each subtype of Korean P. vivax MSP-1 and MSP-$3{\alpha}$ with high accuracy. The PCR-RFLP subtyping methods developed here would be easily applied to massive epidemiological studies for molecular surveillance to understand genetic population of P. vivax and to supervise the genetic variation of the parasite circulating in Korea.

Allelic Diversity of MSP1 Gene in Plasmodium falciparum from Rural and Urban Areas of Gabon

  • Mawili-Mboumba, Denise Patricia;Mbondoukwe, Noe;Adande, Elvire;Bouyou-Akotet, Marielle Karine
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.413-419
    • /
    • 2015
  • The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families' frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (${\pm}0.95$) higher compared to that found at Owendo ($1.55{\pm}0.75$). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.

Genetic polymorphism of merozoite surface protein 1 and antifolate-resistant genes in Plasmodium falciparum from Mali and Niger

  • Mahaman Moustapha Lamine;Rabia Maman;Abdoul Aziz Maiga;Ibrahim Maman Laminou
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.455-462
    • /
    • 2023
  • Since 2015, countries in the Sahel region have implemented large-scale seasonal malaria chemoprevention (SMC). However, the mass use of sulfadoxine-pyrimethamine (SP) plus amodiaquine impacts the genetic diversity of malaria parasites and their sensitivity to antimalarials. This study aimed to describe and compare the genetic diversity and SP resistance of Plasmodium falciparum strains in Mali and Niger. We collected 400 blood samples in Mali and Niger from children aged 3-59 months suspected of malaria. Of them, 201 tested positive (Niger, 111, 55.2%; Mali, 90, 44.8%). Polymorphism of merozoite surface protein 1 (msp1) genetic marker showed 201 allotypes. The frequency of the RO33 allotype was significantly higher in Niger (63.6%) than in Mali (39.3%). There was no significant difference in the frequency of the K1 and MAD20 allotypes between the 2 countries. The multiplicity of infection was 2 allotypes per patient in Mali and one allotype per patient in Niger. The prevalence of strains with the triple mutants Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H and Pfdhfr51I/Pfdhfr59R/Pfdhps437G was 18.1% and 30.2%, respectively, and 7.7% carried the quadruple mutant Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H/Pfdhps437G. Despite the significant genetic diversity of parasite populations, the level of SP resistance was comparable between Mali and Niger. The frequency of mutations conferring resistance to SP still allows its effective use in intermittent preventive treatment in pregnant women and in SMC.