DOI QR코드

DOI QR Code

Genetic polymorphism of merozoite surface protein 1 and antifolate-resistant genes in Plasmodium falciparum from Mali and Niger

  • Mahaman Moustapha Lamine (Faculte de Science et Technique, Universite Andre Salifou) ;
  • Rabia Maman (Molecular Biology Laboratory of Bamako in Mali) ;
  • Abdoul Aziz Maiga (Universite de Ouagadougou, Laboratory of Fundamental and Applied Entomology, Ouagadougou Centre) ;
  • Ibrahim Maman Laminou (Unite de Parasitologie et Entomologie Medicale, Centre de Recherche Medicale et Sanitaire)
  • Received : 2023.04.24
  • Accepted : 2023.09.27
  • Published : 2023.11.30

Abstract

Since 2015, countries in the Sahel region have implemented large-scale seasonal malaria chemoprevention (SMC). However, the mass use of sulfadoxine-pyrimethamine (SP) plus amodiaquine impacts the genetic diversity of malaria parasites and their sensitivity to antimalarials. This study aimed to describe and compare the genetic diversity and SP resistance of Plasmodium falciparum strains in Mali and Niger. We collected 400 blood samples in Mali and Niger from children aged 3-59 months suspected of malaria. Of them, 201 tested positive (Niger, 111, 55.2%; Mali, 90, 44.8%). Polymorphism of merozoite surface protein 1 (msp1) genetic marker showed 201 allotypes. The frequency of the RO33 allotype was significantly higher in Niger (63.6%) than in Mali (39.3%). There was no significant difference in the frequency of the K1 and MAD20 allotypes between the 2 countries. The multiplicity of infection was 2 allotypes per patient in Mali and one allotype per patient in Niger. The prevalence of strains with the triple mutants Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H and Pfdhfr51I/Pfdhfr59R/Pfdhps437G was 18.1% and 30.2%, respectively, and 7.7% carried the quadruple mutant Pfdhfr51I/Pfdhfr59R/Pfdhps436A/F/H/Pfdhps437G. Despite the significant genetic diversity of parasite populations, the level of SP resistance was comparable between Mali and Niger. The frequency of mutations conferring resistance to SP still allows its effective use in intermittent preventive treatment in pregnant women and in SMC.

Keywords

Acknowledgement

We thank Dr. Ronan Jambou, the Scientific Director of CERMES, for reading and correcting the manuscript.

References

  1. Organisation mondiale de la Sante. Chimioprevention du paludisme saisonnier par administration de sulfadoxine-pyrimethamine et d'amodiaquine aux enfants: guide de terrain. Geneve: Organisation mondiale de la Sante, 2013 [Internet]. Available from: https://apps.who.int/iris/handle/10665/85727 (in French)
  2. Esu EB, Oringanje C, Meremikwu MM. Intermittent preventive treatment for malaria in infants. Cochrane Database Syst Rev 2021;7(7):CD011525. https://doi.org/10.1002/14651858.CD011525.pub3
  3. Marie M. Face au paludisme, le Niger generalise la chimioprevention pour les enfants [Internet]; [cited 2023 Apr 23]. Available from: https://www.lemonde.fr/afrique/article/2018/04/19/face-au-paludisme-le-niger-generalise-la-chimioprevention-pour-les-enfants_5287694_3212.html
  4. Noor AM, Kibuchi E, Mitto B, Coulibaly D, Doumbo OK, et al. Sub-national targeting of seasonal malaria chemoprevention in the sahelian countries of the nouakchott initiative. PLoS One 2015;10(8):e0136919. https://doi.org/10.1371/journal.pone.0136919
  5. World Health Organization. Intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP): updated WHO policy recommendation [Internet]. World Health Organization; [cited 2023 Apr 23]. Available from: https://apps.who.int/iris/handle/10665/337990
  6. Marwa KJ, Mushi MF, Konje E, Alele PE, Kidola J, et al. Resistance to Cotrimoxazole and Other Antimicrobials among Isolates from HIV/AIDS and Non-HIV/AIDS Patients at Bugando Medical Centre, Mwanza, Tanzania. AIDS Res Treat 2015;2015:103874. https://doi.org/10.1155/2015/103874
  7. Naidoo I, Roper C. Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria. Trends Parasitol 2013;29(10):505-515. https://doi.org/10.1016/j.pt.2013.08.002
  8. Grais RF, Laminou IM, Woi-Messe L, Makarimi R, Bouriema SH, et al. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger. Malar J 2018;17(1):98. https://doi.org/10.1186/s12936-018-2242-4
  9. Triglia T, Menting JG, Wilson C, Cowman AF. Cowman. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodiumfalciparum. Proc Natl Acad Sci U S A 1997;94(25):13944-13949. https://doi.org/10.1073/pnas.94.25.13944
  10. Lynch C, Pearce R, Pota H, Cox J, Abeku TA, et al. Emergence of a dhfr Mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis 2008;197(11):1598-1604. https://doi.org/10.1086/587845
  11. High Resolution Melting Analysis. HRM Technology [Internet]; [cited 2023 Jun 29]. Available from: http://www.premier-biosoft.com/tech_notes/high_resolution_melting_analysis.html
  12. Yavo W, Konate A, Mawili-Mboumba DP, Kassi FK, Tshibola Mbuyi ML, et al. Genetic polymorphism of msp1 and msp2 in Plasmodium falciparum isolates from Cote d'Ivoire versus Gabon. J Parasitol Res 2016;2016:e3074803. https://doi.org/10.1155/2016/3074803
  13. Ibrahim A, Mahamane Moustapha L, Aboubacar M, Halima Z, Ibrahim ML. Etude du polymorphisme genetique des souches de Plasmodium falciparum au Niger. Revue CAMES SANTE 2017;5(1):42-48 (in French). http://publication.lecames.org/index.php/sante/article/view/648/702
  14. World Health Organization. Methods and Techniques for Clinical Trials on Antimalarial Drug Efficacy: genotyping to identify parasite populations: informal consultation organized by the Medicines for Malaria Venture and cosponsored by the World Health Organization, 29-31 May 2007, Amsterdam, The Netherlands. World Health Organization. Geneva, Swizerland. 2008, pp 1-45. https://apps.who.int/iris/handle/10665/43824
  15. Ceesay SJ, Koivogui L, Nahum A, Taal MA, Okebe J, et al. Malaria prevalence among young infants in different transmission settings, Africa. Emerg Infect Dis 2015;21(7):1114-1121. https://doi.org/10.3201/eid2107.142036
  16. Diakite SAS, Traore K, Sanogo K, Clark TG, Campino S, et al. A comprehensive analysis of drug resistance molecular markers and Plasmodium falciparum genetic diversity in two malaria endemic sites in Mali. Malar J 2019;18(1):361. https://doi.org/10.1186/s12936-019-2986-5
  17. Daniels R, Ndiaye D, Wall M, McKinney J, Sene PD, et al. Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum. Antimicrob Agents Chemother 2012;56(6):2976-2986. https://doi.org/10.1128/AAC.05737-11
  18. Dinzouna-Boutamba SD, Iroungou BA, Akombi FL, YackaMouele L, Moon Z, et al. Assessment of genetic polymorphisms associated with malaria antifolate resistance among the population of Libreville, Gabon. Malar J 2023;22(2):183. https://doi.org/10.1186/s12936-023-04615-1
  19. Wurtz N, Fall B, Pascual A, Diawara S, Sow K, et al. Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal. Malar J 2012;11(1):197. https://doi.org/10.1186/1475-2875-11-197
  20. Beshir KB, Muwanguzi J, Nader J, Mansukhani R, Traore A, et al. Prevalence of Plasmodium falciparum haplotypes associated with resistance to sulfadoxine-pyrimethamine and amodiaquine before and after upscaling of seasonal malaria chemoprevention in seven African countries: a genomic surveillance study. Lancet Infect Dis 2023;23(3):361-370. https://doi.org/10.1016/S1473-3099(22)00593-X