• Title/Summary/Keyword: meropenem resistance

Search Result 25, Processing Time 0.02 seconds

Characterization of Extended Spectrum Beta-Lactamases (ESBL) Producing Escherichia coli Isolates from Surface Water Adjacent to Pharmaceutical Industries in Bangladesh: Antimicrobial Resistance and Virulence Pattern

  • Taslin Jahan Mou;Nasrin Akter Nupur;Farhana Haque;Md Fokhrul Islam;Md. Shahedur Rahman;Md. Amdadul Huq;Anowar Khasru Parvez
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.268-279
    • /
    • 2023
  • The pharmaceutical industry in Bangladesh produces a diverse range of antibiotics for human and animal use, however, waste disposal management is inadequate. This results in substantial quantities of antibiotics being discharged into water bodies, which provide suitable environment for the growth of antibiotic-resistant bacteria, capable of spreading resistance genes. This study intended for exploring the bacterial antibiotic resistance profile in adjoining aquatic environmental sources of pharmaceutical manufacturing facilities in Bangladesh. Seven surface water samples were collected from the vicinity of two pharmaceutical industries located in the Savar area and 51 Escherichia coli isolates were identified using both phenotypic and genotypic methods. Antibiotic susceptibility tests revealed the highest percentage of resistance against ampicillin, azithromycin, and nalidixic acid (100%) and the lowest resistance against meropenem (1.96%) out of sixteen different antibiotics tested. 100% of the study E. coli isolates were observed with Multidrug resistance phenotypes, with the Multiple Antibiotic Resistance (MAR) value ranging from 0.6-1.0. Furthermore, 69% of the isolates were Extended Spectrum Beta-Lactamases (ESBL) positive as per the Double Disk Diffusion Synergy Test (DDST). ESBL resistance genes blaTEM, blaCTX-M-13, blaCTX-M-15, and blaSHV were detected in 70.6% (n = 36), 60.8% (n = 32), 54.9% (n = 28), and 1.96% (n = 1) of the isolates, respectively, by Polymerase Chain Reaction (PCR). Additionally, 15.68% (n = 8) of the isolates were positive for E. coli specific virulence genes in PCR. These findings suggest that pharmaceutical wastewater, if not properly treated, could be a formidable source of antibiotic resistance spread in the surrounding aquatic environment. Therefore, continued surveillance for drug resistance among bacterial populations around drug manufacturing facilities in Bangladesh is necessary, along with proper waste disposal management.

A study on the characteristics and pathogenicity of Aeromonas veronii isolated from infected goldfish (Carassius auratus) (피부 궤양이 발생한 금붕어(Carassius auratus)에서 분리한 Aeromonas veronii의 특성 및 병원성 분석)

  • Hyeon Ki Jung;Min Su Kim;Sok Ho Kim;Min Soon Choi
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.79-88
    • /
    • 2024
  • Aeromonas spp. infections have been reported to cause significant economic losses not only in the ornamental fish industry but also in aquaculture. In December 2022-January 2023, an Aeromonas infection occurred on a goldfish in korea, A gram-negative bacterium was isolated from the skin and internal organs of infected goldfish (Carassius auratus). The results showed that the isolate was identified as Aeromonas veronii using 16S rDNA targeted oilgpnucleotide primers, furthermore characteristics of A. veronii was confirmed by enterotoxin gene, infectious experiment, antibiotic resistance. In-vivo pathogenicity of isolates to goldfsh resulted in 100% mortality in challenged host within one week of post experiment injection. As a result of PCR analysis targeting three enterotoxin-encoding genes, cytotoxic enterotoxin (act) was identified in A. veronii isolate in this study. Antimicrobial susceptibility pattern of isolate showed it was to susceptible to most antimicrobial agents tested but resistant to ampicillin, imipenem, meropenem and clindamycin.

Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea

  • Cho, Hye Hyun;Kwon, Gye Cheol;Kim, Semi;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1154-1162
    • /
    • 2015
  • The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-$\beta$-lactamases (MBLs) and AmpC $\beta$lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of $\beta$-lactamases and characterized chromosomal AmpC $\beta$lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various $\beta$-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = $256{\mu}g/ml$) and cefepime (MIC50 = $256{\mu}g/ml$). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC $\beta$-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of $\beta$-lactamases.

Antimicrobial Activities of Extracts of Camellia sinensis (L.) O. Kuntze and Profile of Antimicrobial Agents Resistance for Carbapenem-Resistant Enterobacteriaceae

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.288-292
    • /
    • 2019
  • In vitro antimicrobial activities of hot water extracts of Camellia sinensis (L.) O. Kuntze, for carbapenem-resistant Enterobacteriaceae (CRE) were compared to commonly used conventional antimicrobial agents. CRE was not only resistant to imipenem, meropenem or ertapenem, but also to various antimicrobial agents, such as amikacin (> $128{\mu}g/mL$). The hot water extracts of Camellia sinensis (L.) O. Kuntze had the lowest MIC ($0.06{\sim}0.5{\mu}L/mL$) of the carbapenem-resistant E. coli, K. pneumoniae, and Enterobacter spp. tested, and it was possible more potent than various conventional antimicrobial agents. Synergistic combinations of the extract with used commonly antimicrobial agents might even improve its antimicrobial chemotherapy property.

L-glutamine:D-fructose-6-phosphate Aminotransferase as a Key Protein Linked to Multidrug Resistance in E. coli KD43162

  • Lee, Sung-Eun;Jung, Tae-Jeon;Park, Byeoung-Soo;Kim, Byung-Woo;Lee, Eun-Woo;Kim, Hye Jin;Yum, Jong Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.227-232
    • /
    • 2015
  • A microarray study has been employed to understand changes of gene expression in E. coli KD43162 resistant to ampicillin, ampicillin-sulbactam, piperacillin, piperacillin-tazobactam, cefazolin, cefepime, aztreonam, imipenem, meropenem, gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, fosfomycin, and trimethoprim-sulfamethoxazole except for amikacin using disk diffusion assay. Using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and MALDI-TOF MS analyses, 36 kDa of outer membrane proteins (OMPs) was found to be deleted in the multidrug resistant E. coli KD 43162. Microarray analysis was used to determine up- and down-regulated genes in relation to multidrug resistant E. coli KD43162. Among the up-regulated genes, these genes were corresponded to express the proteins as penicillin-binding proteins (PBPs), tartronate semialdehyde reductase, ethanolamine utilization protein, shikimate kinase I, allantoinase, predicted SAM-dependent methyltransferase, L-glutamine: D-fructose-6-phosphate aminotransferase (GFAT), phospho-glucosamine mutase, predicted N-acetylmannosamine kinase, and predicted N-acetylmannosamine-6-P epimerase. Up-regulation of PBPs, one of primary target sites of antibiotics, might be responsible for the multidrug resistance in E. coli with increasing amount of target sites. Up-regulation of GFAT enzyme may be related to the up-regulation of PBPs because GFAT produces N-acetylglucosamine, a precursor of peptidoglycans. One of GFAT inhibitors, azaserine, showed a potent inhibition on the growth of E. coli KD43162. In conclusion, up-regulation of PBPs and GFATs with the loss of 36 kDa OMP refers the multidrug resistance in E. coli KD 43162.

Prevalence of Multi-Antibiotic Resistant Bacteria Isolated from Children with Urinary Tract Infection from Baghdad, Iraq

  • Salman, Hamzah Abdulrahman;Alhameedawi, Alaa kamil;Alsallameh, Sarah Mohammed Saeed;Muhamad, Ghofran;Taha, Zahraa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.147-156
    • /
    • 2022
  • Urinary tract infections (UTIs) are one of the most common infections in different age groups, including children. Bacteria are the main etiological agents of UTIs. The aim of the present study was to isolate, identify, and determine the antibiotic susceptibility of bacteria isolated from children with UTIs from Baghdad, Iraq. Three hundred and two urine samples were collected from children aged 6 months to 12 years. The samples were cultured on blood agar and MacConkey agar. The selected colonies were subjected to biochemical tests and antibiotic susceptibility analysis using the Vitek® 2 Compact automated microbial identification system. In this sample, 299 bacteria were identified, of which, 267 were gram-negative bacteria, and 32 were gram-positive bacteria. Escherichia coli (56%) was the most commonly isolated gram-negative bacteria, followed by Pseudomonas aeruginosa (14%), Enterobacter spp. (10.48%), Klebsiella pneumoniae (9.36%), Proteus spp. (7.8%), Acinetobacter baumannii (1.5%), and Morganella morganii (0.37%). Enterococcus faecalis (62.5%) was the most commonly detected gram-positive bacteria, followed by Staphylococcus aureus (37.5%). E. coli and P. aeruginosa were the most antibiotic-resistant bacteria. Among the tested antibiotics, meropenem showed 100% sensitivity, followed by imipenem (97.4%), amikacin (91.8%), and tobramycin (83.5%). In contrast, the high frequencies of resistance were observed with cefixime (93.2%), cefotaxime (78.7%), and ceftriaxone/cefotaxime (71.2%). In conclusion, carbapenems and aminoglycosides are highly recommended for the empirical treatment of UTIs, while, Quinolones, penicillins, and cephalosporins are not suggested. Frequent antibiotics susceptibility testing are warranted to determine the resistance pattern of UTI bacteria.

Lactic Acid Bacteria Isolated from Healthy Korean Having Antimicrobial Activity Against VISA and VRE (한국 성인에서 분리한 유산균의 VISA(Vancomycin-Intermediate Resistant Staphylococcus aureus)와 VRE(Vancomycin Resistant Enterococcus faecium)에 대한 성장 억제)

  • Yun Ji-Hee;Kim Yun-A;Song Moon-Seok;Kang Byung-Yong;Ha Nam-Joo
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.78-83
    • /
    • 2006
  • VISA and VRE are the main causes of surgical infection, urinary tract infections and bacteremia in hospitals. In this study; we selected VISA (Vancomycin Intermediate resistant Staphylococcus aureus) and VRE (Vancomycin Resistant Enterococcus) isolated from the clinical isolates. One of the isolated strains indicated the high resistance to severel anti-biotics (Vancomycin, Teicoplanin, Mupirocin, Synercid, Ciprofloxacin, Gentamicin, Lincomycin, Cefotaxim, Meropenem). Antimicrobial activity of Bifidobacterium spp. against VISA and VRE were measured. About $10^4$ cells of VISA or VRE were mixed with 1,5 and 9 ml of Bifidobacterium and the final volume was adjusted to 10 ml with brain heart infusion (BHI) broth. The cell suspension was incubated for 3, 6, 9, and 24 hr, serially diluted and then plated on BHI agar plate. As numbers of Bifidobacterium were increased viable cell count of VISA and VRE decreased. The strongest antimicrobial activity of the Bifidobacterium was observed after 9hr incubation in any mixture, almost completely inhibiting the growth of VISA and VRE.

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates (임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학)

  • Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1268-1276
    • /
    • 2012
  • The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.

Burkholderia Cepacia Causing Nosocomial Urinary Tract Infection in Children

  • Lee, Ki Wuk;Lee, Sang Taek;Cho, Heeyeon
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 2015
  • Purpose: Burkholderia cepacia is an aerobic, glucose-non-fermenting, gram-negative bacillus that mainly affects immunocompromised and hospitalized patients. Burkholderia cepacia has high levels of resistance to many antimicrobial agents, and therapeutic options are limited. The authors sought to analyze the incidence, clinical manifestation, risk factors, antimicrobial sensitivity and outcomes of B. cepacia urinary tract infection (UTI) in pediatric patients. Methods: Pediatric patients with urine culture-proven B. cepacia UTI between January 2000 and December 2014 at Samsung Medical Center, a tertiary referral hospital in Seoul, Republic of Korea, were included in a retrospective analysis of medical records. Results: Over 14 years, 14 patients (male-to-female ratio of 1:1) were diagnosed with B. cepacia UTI. Of 14 patients with UTI, 11 patients were admitted to the intensive care unit, and a bladder catheter was present in 9 patients when urine culture was positive for B. cepacia. Patients had multiple predisposing factors for UTI, including double-J catheter insertion (14.2%), vesico-ureteral reflux (28.6%), congenital heart disease (28.6%), or malignancy (21.4%). Burkholderia cepacia isolates were sensitive to piperacillin-tazobactam and sulfamethoxazole-trimethoprim, and resistant to amikacin and colistin. Treatment with parenteral or oral antimicrobial agents including piperacillin-tazobactam, ceftazidime, meropenem, and sulfamethoxazole-trimethoprim resulted in complete recovery from UTI. Conclusion: Burkholderia cepacia may be a causative pathogen for nosocomial UTI in pediatric patients with predisposing factors, and appropriate selection of antimicrobial therapy is necessary because of high levels of resistance to empirical therapy, including aminoglycosides.

Activities of Ketonic Fraction from Leptospermum scoparium alone and Synergism in Combination with Some Antibiotics Against Various Bacterial Strains and Fungi (Leptospermum scoparium 추출물중 케톤체 분획물의 항균력 및 항생제와의 병용효과)

  • 김은희;이계주
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.716-728
    • /
    • 1999
  • Whole oil and ketonic fraction (KF) of Leptospermum scoparium have been tested for their antimicrobial activity and combination effect with several antibiotics against various bacterial strains and fungi by using microbiological assay methods. Antibacterial activities of KF against a number of test strains were 2-3 fold stronger than those of whole oil. MICs of the KF were $65~125{\;}{\mu\textrm{g}}/ml$ against seven gram positive bacterial strains, $65~250{\;}{\mu\textrm{g}}/ml$ against 19 methicillin resistance Staphylococcus aureus strains, and $65~50{\;}{\mu\textrm{g}}/ml$ against 14 quinolone resistance strains. However, KF showed little or no activity against gram negative bacteria. MICs of the KF were $16~250{\;}{\mu\textrm{g}}/ml$ against more than 50% of the anaerobic bacterial strains tested. KF showed the higher antibacterial activity than bacitracin against 10 strains of Bacteroids thetaiotaomicron, or three strains of Bacteroides ovatus, and the more active than ciprofloxacin against one strain of Bacteroides thetaiotaomicron and three strains of Bacteroids ovatus. The MICs of KF was 63 and $250{\;}{\mu\textrm{g}}/ml$ against Aspergillus niger and Candida albicans, respectively. Antibacterial activities of KF in combination with 19 antibiotics against 14 strains and with four antifungal agents against one fungal strain were determined by paper strip diffusion method. While most of combination showed additivity, KF showed synergism with bacitracin, exfadroxil, cephradin, and meropenem for 29~57% of the strains tested. However, ofloxacin, enoxacin, sparfloxacin showed antagonism with KF for 43~71% of the strains. KF alone and in combination with bacitracin, gentamycin, neomycin, itraconazole, fluconazole, terfinafine and ketoconazole against five bacterial strains or one fungus strain synergistic effect was demonstrated against 33% of strains examined with FIC index value below 0.5 by checkerboard study. Synergistic effect of KF with gentamicin against Staphylococcus epidermidis 329 (QRS) was found by time-kill study.

  • PDF