Browse > Article
http://dx.doi.org/10.4014/jmb.1503.03065

Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea  

Cho, Hye Hyun (Department of Biomedical Laboratory Science, Jeonju Kijeon College)
Kwon, Gye Cheol (Department of Laboratory Medicine, College of Medicine, Chungnam National University)
Kim, Semi (Department of Laboratory Medicine, College of Medicine, Chungnam National University)
Koo, Sun Hoe (Department of Laboratory Medicine, College of Medicine, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1154-1162 More about this Journal
Abstract
The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-$\beta$-lactamases (MBLs) and AmpC $\beta$lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of $\beta$-lactamases and characterized chromosomal AmpC $\beta$lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various $\beta$-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = $256{\mu}g/ml$) and cefepime (MIC50 = $256{\mu}g/ml$). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC $\beta$-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of $\beta$-lactamases.
Keywords
AmpC $\beta$-lactamase; metallo-$\beta$-lactamase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yong D, Shin HB, Kim YK, Cho J, Lee WG, Ha GY, et al. 2014. Increase in the prevalence of carbapenem-resistant Acinetobacter isolates and ampicillin-resistant non-typhoidal Salmonella species in Korea: a KONSAR study conducted in 2011. Infect. Chemother. 46: 84-93.   DOI
2 Sevillano E, Gallego L, García-Lobo JM. 2009. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol. Biol. (Paris) 57: 493-495.   DOI
3 Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y. 2011. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55: 2710-2713.   DOI
4 Upadhyay S, Mishra S, Sen MR, Banerjee T, Bhattacharjee A. 2013. Co-existence of Pseudomonas-derived cephalosporinase among plasmid encoded CMY-2 harbouring isolates of Pseudomonas aeruginosa in north India. Indian J. Med. Microbiol. 31: 257-260.   DOI
5 Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F, et al. 2009. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum β-lactamases GES-1 and GES-5 in Spain. Antimicrob. Agents Chemother. 53: 4930-4933.   DOI
6 Wang J, Zhou JY, Qu TT, Shen P, Wei ZQ, Yu YS, et al. 2010. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int. J. Antimicrob. Agents 35: 486-491.   DOI
7 Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 27: 351-353.   DOI
8 Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. 2015. Dominance of international ‘high-risk clones’ among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J. Antimicrob. Chemother. 70: 103-110.   DOI
9 Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, et al. 2013. FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob. Agents Chemother. 57: 410-416.   DOI
10 Poole K. 2011. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2: 65.   DOI
11 Qing Y, Cao KY, Fang ZL, Huang YM, Zhang XF, Tian GB, et al. 2014. Outbreak of PER-1 and diversity of β-lactamases among ceftazidime-resistant Pseudomonas aeruginosa clinical isolates. J. Med. Microbiol. 63: 386-392.   DOI
12 Quale J, Bratu S, Gupta J, Landman D. 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 50: 1633-1641.   DOI
13 Raimondi A, Sisto F, Nikaido H. 2001. Mutation in Serratia marcescens AmpC β-lactamase producing high-level resistance to ceftazidime and cefpirome. Antimicrob. Agents Chemother. 45: 2331-2339.   DOI
14 Rodríguez-Martínez JM, Poirel L, Nordmann P. 2009. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53: 1766-1771.   DOI
15 Rodríguez-Martínez JM, Poirel L, Nordmann P. 2009. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53: 4783-4788.   DOI
16 Pasteran F, Faccone D, Petroni A, Rapoport M, Galas M, Vázquez M, et al. 2005. Novel variant (bla(VIM-11)) of the metallo-{β}-lactamase bla(VIM) family in a GES-1 extendedspectrum-{β}-lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob. Agents Chemother. 49: 474-475.   DOI
17 Sanbongi Y, Shimizu A, Suzuki T, Nagaso H, Ida T, Maebashi K, et al. 2009. Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol. Immunol. 53: 361-367.   DOI
18 Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. 2014. Determination of extended spectrum β-lactamases, metallo-β-lactamases and AmpC-β-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 40: 1556-1561.   DOI
19 Pasteran F, Faccone D, Gomez S, De Bunder S, Spinelli F, Rapoport M, et al. 2012. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing Pseudomonas aeruginosa in Argentina. J. Antimicrob. Chemother. 67: 1291-1293.   DOI
20 Pellegrino FL, Teixeira LM, Carvalho Md Mda G, Aranha Nouér S, Pinto De Oliveira M, Mello Sampaio JL, et al. 2002. Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil. J. Clin. Microbiol. 40: 2420-2424.   DOI
21 Pérez-Pérez FJ, Hanson ND. 2002. Detection of plasmidmediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162.   DOI
22 Philippon A, Arlet G, Jacoby GA. 2002. Plasmid-determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother. 46: 1-11.   DOI
23 Cornaglia G, Giamarellou H, Rossolini GM. 2011. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 11: 381-393.   DOI
24 Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70: 119-123.   DOI
25 Cho HH, Kwon KC, Sung JY, Koo SH. 2013. Prevalence and genetic analysis of multidrug-resistant Pseudomonas aeruginosa ST235 isolated from a hospital in Korea, 2008-2012. Ann. Clin. Lab. Sci. 43: 414-419.
26 Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing: twentysecond informational supplement. M100-S22. CLSI, Wayne, Pennsylavania.
27 Grover N, Sahni AK, Bhattacharya S. 2013. Therapeutic challenges of ESBLS and AmpC β-lactamase producers in a tertiary care center. Med. J. Armed Forces India 69: 4-10.   DOI
28 Huang YT, Chang SC, Lauderdale TL, Yang AJ, Wang JT. 2007. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-beta-lactamase genes in Taiwan. Diagn. Microbiol. Infect. Dis. 59: 211-216.   DOI
29 Hu LF, Chang X, Ye Y, Wang ZX, Shao YB, Shi W, et al. 2011. Stenotrophomonas maltophilia resistance to trimethoprim/ sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int. J. Antimicrob. Agents 37: 230-234.   DOI
30 Jacoby GA. 2009. AmpC β-lactamases. Clin. Microbiol. Rev. 22: 161-182.   DOI
31 Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterialresistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22: 582-610.   DOI
32 Bae IK, Suh B, Jeong SH, Wang KK, Kim YR, Yong D, et al. 2014. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn. Microbiol. Infect. Dis. 79: 373-377.   DOI
33 Mammeri H, Nordmann P. 2007. Extended-spectrum cephalosporinases in Enterobacteriaceae. Anti-Infect. Agents Med. 6: 71-82.   DOI