• Title/Summary/Keyword: mercury ions

Search Result 87, Processing Time 0.034 seconds

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF

Synthesis and Properties of Rhodamine Dye Sensor Material toward detection Response (진단감응 로다민 색소센서재료 합성 및 특성 분석)

  • Kim, Hyung-Joo;Lee, Do-Hyun;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.34-34
    • /
    • 2011
  • Recently, people have concerned about environmental pollution. This environmental pollution occur due to many reasons such as heavy metal ions and anions. In this regard, many researchers have studied organic materials to monitor above reasons to protect environmental pollution. One of the organic materials for this function is chemosensor. This chemosensor has been studied and reported about monitoring toxic heavy metal ions and anions. In this study, the dye sensor was designed and synthesized through reaction of Rhodamine 6G and 1,3-Indanedion. this dye sensor selective detected $Hg^{2+}$ metal ions while showing red color absorption and yellowish-green strong fluorescence emission compared to other heavy metal ions such as $Cu^{2+}$, $Hg^{2+}$, $Ag^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Fe^{3+}$. In this regard, we anticipated that this dye senosr can provide an significant material for monitoring mercury which cause environmental pollution. Thus, We investigated detailed properties of this dye sesnor with using UV-Vis absorption and fluorescent spectrophotometer, Job's plot method for metal binding complex, computational simulated calculation named Material Studio 4.3 suite to approach for electron distribution and HOMO/LUMO.

  • PDF

Determination of Hg (II) Ion at a Chemically Modified Carbon Paste Electrode Containing L-Sparteine (L-Sparteine 수식전극을 사용한 Hg (II) 이온의 정량)

  • Euh Duck Jeong;Mi-Sook Won;Yoon-Bo Shim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.545-552
    • /
    • 1991
  • A mercury ion-sensitive carbon-paste electrode (CPE) was constructed with l-sparteine. Mercury (II) ion was chemically deposited by the complexation with l-sparteine onto the CPE. The surface of CPEs was characterized by cyclic voltammetry and anodic stripping voltammetry in an acetate buffer solution, separately. Exposure of CPEs to acid solution could regenerate surface and reuse it for deposition. In 5 deposition/measurement/regeneration cycle, the response was reproducible and in licnear up to $2.0\;{\times}\;10^{-6}$ M with linear sweep voltammetry. In case of using the differential pulse technique, we have obtained the linear response up to $7.0 {\times}10^{-7}$ M with relative standard deviation of ${\pm}5.1$%. The detection limit was $5.0{\times}10^{-7}$ M for 20 minutes of the deposition. We have investigated the interference effect of various metal ions, which are expected to form the complex with ligand. Silver (I) ion of these has interfered with the analysis of Hg (II) ions. However, pretreatment of the silver (I) ion with potassium chloride led to no interference on the analysis of mercury ions in aqueous solution.

  • PDF

Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성)

  • 문한영;김홍삼;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Transition Metal Induces Apoptosis in MC3T3E1 Osteoblast: Evidence of Free Radical Release

  • Chae, Han-Jung;Chae, Soo-Wan;Kang, Jang-Sook;Yun, Dong-Hyeon;Bang, Byung-Gwan;Kang, Mi-Ra;Kim, Hyung-Min;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • Transition metal ions including $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ have been thought to disturb the bone metabolism directly. However, the mechanism for the bone lesion is unknown. In this study, we demonstrated that MC3T3E1 osteoblasts, exposed to various transition metal ions; selenium, cadmium, mercury or manganese, generated massive amounts of reactive oxygen species (ROS). The released ROS were completely quenched by free radical scavengers-N-acetyl cysteine (NAC), reduced glutathione (GSH), or superoxide dismutase (SOD). First, we have observed that selenium $(10\;{\mu}M),$ cadmium $(100\;{\mu}M),$ mercury $(100\;{\mu}M)$ or manganese (1 mM) treatment induced apoptotic phenomena like DNA fragmentation, chromatin condensation and caspase-3-like cysteine protease activation in MC3T3E1 osteoblasts. Concomitant treatment of antioxidant; N-acetyl-L-cysteine (NAC), reduced-form glutathione (GSH), or superoxide dismutase (SOD), prevented apoptosis induced by each of the transition metal ions. Catalase or dimethylsulfoxide (DMSO) has less potent inhibitory effect on the apoptosis, compared with NAC, GSH or SOD. In line with the results, nitroblue tetrazolium (NBT) stain shows that each of the transition metals is a potent source of free radicals in MC3T3E1 osteoblast. Our data show that oxidative damage is associated with the induction of apoptosis in MC3T3E1 osteoblasts following $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ treatment.

  • PDF

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.

Distribution of Heavy Metals and Hydrocarbons Resistant Bacteria at Pohang Area (포항지역의 중금속과 탄화수소 내성균 분포)

  • 김갑정;이인수;박경량
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.339-347
    • /
    • 1998
  • As a part of a study on the development of microbiological methods for petroleum exploration, the distribution of the avarafe survival rate for heterotrophs to various heavy metal ions and hydrocarbons were surveyed and compared by the use of plate count method. In consequence of the avarage survival rate to heavy metal ions(2 hours treatment) and hydrocarbons(1 hour treatment) for heterotrophs isolatinf from soil samples(50cm depth) which located in Doum mountain(A, B and D site) and Aedowon(C site) at Pohang area, the survival rate of heterotrophs for nickel(600ppm), cobalt(500ppm), cadmiun(100ppm), mercury(20ppm), zinc(400 ppm) and lead(500ppm) were 73.7%, 82.6%, 76.8%, 9.5%, 77.8% and 73.6% at A site and 67.9%, 82.5%, 86.0%, 5.8%, 82.5% and 91.7% at B site, 87.8%, 79.8%, 87.5%, 7.0%, 84.2% AND 47.7% AT c SITE, AND 71.8%, 76%, 85.9%, 1,2%, 79.6% AND 88.3% AT D site, respectively. Also the survival rate of heterotrophs from A,B,C and D site to pentane and hexane(each concentration is 20%) were 26.7% and 42.5%, 11.8% and 8.1%, 44.3% and 36.2%, and 12% and 3.5%, respectively. therefore, heterotrophs from B and D site that alternated gravelstone, muddy sandstone and sandstone were higher survival rate to the heavy metal ions than heterotrophs from A site which mainly composed gravelstone. Also, heterotrophs from C site which mainly composed muddy sandstone and once produced natural gas were showed relatively higher survival rate to the heavy metal ions and hydrocarbons than the other sites. Consequently, we confirmed that the distributions of tolerant heterotrophs to heavy metal ions and hydrocarbons were differ from the lithological compositon.

  • PDF

A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex

  • Lee, Ji-Eun;Choi, Kyu-Seong;Seo, Moo-Lyong;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2031-2035
    • /
    • 2010
  • A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of $Hg^{2+}$. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of $Hg^{2+}$. In addition, L showed large anodic shift (~ 0.3 V) for the addition of excess $Hg^{2+}$. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexs of L which shows a 1-D polymer network with a formula $[Hg_2(L)_2(NO_3)_2({\mu}-NO_3)_2]_n$ was also reported.

Determination of Trace Strontium with o-Cresolphthaleoxon by Electroanalytical method (o-Cresolphthaleoxon을 이용한 스트론튬의 전기화학적 분석)

  • Choi, Won Hyung;Lee, Jin Sik;Kim, Do Hoon;Kim, Jae Soo
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 1993
  • Strontium can not be determined by conventional dc polarography method since it is very difficult to be reduced at the drop mercury electrode(DME) in aqueous solution. However the analytical sensitivity was improved by adsorptive stripping voltammetry in which electro-reduction of ligand in a complex formed between strontium and o-cresolphthaleoxone was performed. Strontium could be determined in range of $5{\sim}30{\mu}g/L$ concentration. This method was affected by coexistent alkali earth metal ions. Consequently ion exchange separation is recommended to analyze strontium in samples.

  • PDF