• Title/Summary/Keyword: menaquinone

Search Result 46, Processing Time 0.022 seconds

Vitamin K and Bone Health (비타민 K와 골 건강)

  • Lim, Sang-Dong;Kim, Kee-Sung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2011
  • Vitamin K, which is a nutritional factor, play a role in the regulation of bone metabolism. Vitamin K exists naturally in 2 forms, namely, vitamin $K_1$ (phylloquinone) in green plants and vitamin $K_2$ (menaquinone) in animals and bacteria. Vitamin $K_1$ has an effect on bone metabolism. Vitamin $K_2$ is essential for the ${\gamma}$-carboxylation of osteocalcin, a bone matrix protein containing ${\gamma}$-carboxyglutamic acid (Gla) which is synthesized in osteoblast of bone tissues. This paper is to provide the basic information of vitamin K by supplying function and biological activity of vitamin K together with vitamin K producing lactic acid bacteria and it's utilization for the dairy products production.

  • PDF

Identification of the Actinomycetes Strain No. 497, Isolated from Soil, Producing Actinomycin Antibiotic MT-497 (Actinomycin계열 항생물질 MT-497 을 생산하는 방선균 분리주 No.497의 동정)

  • 안종석;이영선;안순철;이정형;이지행;윤병대;민태익
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.561-567
    • /
    • 1991
  • Identification of the Actinomycetes isolate strain No. 497 producing an actinomycin antibiotic MT-497 was performed by ISP and chemotaxonomic methods. The strain Nu. 497 formed various shapes of sclerotia and smooth surface spore. Menaquinone MK-9 ($H_6, H_8$) and iso-, anteiso-branched $C_{15}C_{17}$ fatty acids were detected from whole cell extract. The wall chemotype of stram No. 497 was decided as wall chemotype I from the analysis of DAP isomer, peptidoglycan type and sugar pattern. From these morphological, chemotaxonomic characteristics and analysis of various physiological characteristics. the strain No. 497 was identified as Streptomyces nigrifaciens.

  • PDF

Isolation of Sphinin, an Inhibitor of Sphingomyelinase, from Streptomyces sp. F50970

  • LIM, SI-KYU;WAN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.655-660
    • /
    • 1999
  • Sphingomyelinase (SMase EC:3.l.4.l2) has been suggested to play important roles in the cell cycle, differentiation, apoptosis, inflammation, and the regulation of eukaryotic stress responses. SMase inhibitors may be a powerful tool to elucidate and regulate these cellular responses in which SMase involves. We first isolated an SMase inhibitor, named sphinin, from a strain of soil actinomycetes, F50970. Sphinin inhibited Mg/sup 2+/ -dependent neutral SMase from chicken embryo at 1.2 ㎍/㎖ of IC/sub 50/ Sphinin also inhibited acidic SMase, but it had no inhibitory activity on PI-PLC and PC-PLC, suggesting that sphinin is a specific inhibitor of SMase. The strain F50970 was identified as a Streptomyces sp. by its spiral spore chain, LL-diaminopimelic acid, menaquinone patterns of MK-9 (H'6) and MK-9 (H'8), FA-2c type of fatty acid pattern, and other morphological, physiological, and cultural characteristics.

  • PDF

Identification of Adenosine Deaminase Inhibitor-producing Bacterium Isolated from Soil

  • SHIN, YONG KOOK;YONG-HA PARK;JAE-DONG LEE;HONG-KI JUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 1997
  • An adenosine deaminase inhibitor-producing bacterium was isolated from soil. An isolate exhibiting high adenosine deaminase inhibitory activity, was designated J-89, and classified as a strain of Bacillus subtilis on the basis of its morphological, phenotypic characteristics, the menaquinone content and cellular fatty acid composition. To confirm the taxonomic position of the strain we need more information such as DNA-DNA homology and other chemotaxonomic characteristics. In this paper we provisionally named strain J-89 as Bacillus sp. J-89 pending further chemotaxonomic study and analysis of adenosine deaminase inhibitor.

  • PDF

Lipid analysis of streptomycetes isolated form volcanic soil

  • Kim, Seung-Bum;Kim, Min-Young;Seong, Chi-Nam;Ouk, Kang-Sa;Hah, Yung-Chil
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.184-191
    • /
    • 1996
  • The cellular fatty acids and quinones of streptomycetes isolated from volcanic soils were analysed. The strains contained fatty acids of 14 to 17 carbon chains, and 12-methyltetradecanoic acid and 14 methylpentadecanoic acid were dominant in most strains. The total profiles consisted of 74% branched fatty acid family, 16.8% linear family and 8.2% unsaturated family. The largest cluster of grey spore meases defined by numerical classification was separated from the remainders in the principal component analysis, but the other clusters were overlapped with one another. In the analysis of respiratory quinones, all of the strains contained either the menaquinone of 9 isoprene units with 6 hydrogenations of 8 hydrogenations as the major species. The distribution of menaquinones among the clusters could provide an important key in the chemotaxonomy of streptomycetes.

  • PDF

Tsukamurella sunchonensis sp. nov., aBacterium Associated with Foam in Activated Sludge

  • Seong, Chi-Nam;Kim, Young-Sook;Baik, Yeun-Shik;Park, Sang-Ki;Kim, Min-Bae;Kim, Seung-Bum;Michael Goodfellow
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • The taxonomic position of actinomycete strain SCNU5$\^$T/, isolated from extensive foam in the aeration basin of an activated sludge process, was clarified by phenotypic, chemotaxonomic and phylogenetic analyses. The strain possesses wall chemotype IV, MK-9(H$\^$0/), as the major menaquinone, and contains saturated, monounsaturated and 10-methyl branched fatty acids. The G+C content of its DNA is 68.1 mol%. Phenotypic data and DNA relatedness to known species indicate that the strain SCNU5$\^$T/ represents a new species within the genus Tsukamurella, for which we propose the name Tsukamurella sunchonensis SP. NOV. The type Strain Of T. sunchonensis is SCNU5$\^$T/ (=KCTC 9827$\^$T/).

Identification of the Streptomyces Strain HSL-613 Producing Cholesterol Oxidase (Cholesterol Oxidase를 생산하는 방선균분리주 HSL-613의 동정)

  • Lee, Hong-Soo;Lee, In-Ae;Choe, Yong-Kyung;Lee, Hee-Gu;Lee, Keun-Chul;Park, Yong-Ha;Oh, Tai-Kwang;Choe, In-Seong;Chung, Tai-Wha
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 1994
  • An actinomycete strain, HSL-613 was isolated -from soil and identified by International Streptomyces Project (ISP) and chemotaxonomic methods. The spore chain of the strain HSL-613 appears in a spiral shape, and its spores are spherical shape with smooth surface. The cell wall contains LL-diaminopimelic acid (DAP). Menaquinone MK-9 (H$_{6}$, H$_{8}$) and iso- and anteiso-branched fatty acids were detected from whole cell extract. Sugars identified from whole cell extract include galactose, glucose, mannose and ribose, which are distinct from general sugar patterns of Streptomyces. Average G+C content in the chromosome is 59%. 5S rRNA of HSL-613 consists of 120 nucleotides as determined by comparing with that of a type strain Streptomyces griseus subsp. KCTC 9080. Through morphological, physiological, and chemical characterization, HSL-613 was identified and named as Streptomyces sp. HSL-613.

  • PDF

Isoprenoid Quinone Profiles of the Leclercia adecarboxylata KCTC $l036^T$

  • Shin, Yong Kook;Jung Sook Lee;Chang Ouk Chun;Hong Joong Kim;Yong Ha Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.68-69
    • /
    • 1996
  • The isoprenoid quinone composition of Leclercia adecarboxylata KCTC $1036^T$ was determined by using high-performance liquid chromatography. L. adecarboxylata KCTC $1036^T$ are characterized by their production of both ubiquinone-7, ubiquinone-8 and menaquinone-8 as major quinones. It is clear that the analysis of isoprenoid quinone profiles provides a new criterion of great promise for identifying Leclercia strains.

  • PDF

Identification and Characterization of an Agarase- and Xylanse-producing Catenovulum jejuensis A28-5 from Coastal Seawater of Jeju Island, Korea (제주 연안해수로부터 한천 분해 효소 및 자일란 분해 효소를 생산하는 Catenovulum jejuensis A28-5의 동정 및 특성 규명)

  • Kim, Da Som;Jeong, Ga Ram;Bae, Chang Hwan;Yeo, Joo-Hong;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.168-177
    • /
    • 2017
  • Strain A28-5, which can degrade xylan and agar in solid medium, was isolated from a coastal seawater sample collected from Jeju Island, South Korea. This strain was found to be a gram-negative, $Na^+$-requiring bacterial strain with a polar flagellum for motility. Additionally, the strain was tolerant to antibiotics such as ampicillin and thiostrepton. The G+C content of the genome was 43.96% and menaquinone-7 was found to be the predominant quinone. Major fatty acids constituting the cell wall of the strain were $C_{16:1}$ ${\omega}7c/iso-C_{15:0}$ 2-OH (23.32%), $C_{16:0}$ (21.83%), and $C_{18:1}$ ${\omega}7c$ (17.98%). The 16S rRNA gene sequence of the strain showed the highest similarity (98.94%) to that of Catenovulum agarivorans YM01, which was demonstrated by constructing a neighbor-joining phylogenetic tree. A28-5 was identified as a novel species of the genus Catenovulum via DNA-DNA hybridization with Catenovulum agarivorans YM01, and thus was named as Catenovulum jejuensis A28-5. The formation of tetramers and hexamers of xylooligosaccharides and (neo)agarooligosaccharides, respectively, were confirmed by thin-layer chromatography analysis using an enzyme reaction solution containing xylan or agarose with two crude enzymes prepared from the liquid culture of the strain.

Isolation and Identification of Halotolerant Bacillus sp. SJ-10 and Characterization of Its Extracellular Protease (세포외 Protease를 생산하는 내염성 Bacillus sp. SJ-10 균주의 분리 동정 및 효소 특성)

  • Kim, Eun-Young;Kim, Dong-Gyun;Kim, Yu-Ri;Choi, Sun-Young;Kong, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • A bacterium producing the halotolerant extracellular protease was isolated from squid jeotgal, and was identified as Bacillus sp. SJ-10 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The strain grew at $20^{\circ}C\sim55^{\circ}C$, pH 5~8, and 0%~14% NaCl and optimal growth conditions were $35{\pm}5^{\circ}C$, pH 7, and 5% NaCl. The major cellular fatty acids were anteiso-$C_{15:0}$, anteiso-$C_{17:0}$, and $C_{16:0}$ DNA G+C content was 50.58 mol% and menaquinone consisted of MK-7 Phylogenic analysis based on the 16S rRNA gene sequence indicated that SJ-10T belongs to the genus Bacillus. About 40 kDa of the salt-tolerant protease was purified by 40% ammonium sulfate saturation and Mono Q column chromatography. The optimal activity of the protease was pH 8 and stable at pH 5~10. The optimum temperature and NaCl concentration were $35{\pm}5^{\circ}C$ and $5{\pm}1%$, respectively.