• Title/Summary/Keyword: memory controller

Search Result 346, Processing Time 0.026 seconds

An Operating Circuits Design for preventing Electrostatic Discharge in Liquid Crystal Displays

  • Jo, Jo-Yeon;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.674-676
    • /
    • 2008
  • An electrostatic discharge (ESD) or a noise supplied from the outside has an effect on communication between the timing controller (TCON) and the memory element (EEPROM) through the interface between the timing controller and the memory element in liquid crystal displays (LCD). Therefore, we must apply ESD protection methods to LCD operating circuits for a normal operation. Our ESD protection circuit is to prevent from bi-directional communication errors between TCON and EEPROM due to an electrostatic discharge (ESD).

  • PDF

CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example (다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

Improvement of Memory Efficiency for Alternative Sequence in Process Control System Described by SFC (SFC로 설계된 공정제어에서 선택시퀀스의 메모리효율향상)

  • You, Jeong-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.55-61
    • /
    • 2010
  • When we design the control system used Programmable Logic Controller(PLC) by Sequential Function Chart(SFC), if we use a SFC, it is easy to know the sequential flow of control, to maintenance the controller and to describe a program. We program a SFC by a unique sequence, an alternative sequence and a parallel sequence. If we program a SFC by a alternative sequence, the memory size of a alternative sequence must be larger than the memory size of a unique sequence. Therefore this thesis show an efficient method to reduce a memory size and we confirmed its feasibility through actual example.

DMAC implementation On $Excalibur^{TM}$ ($Excalibur^{TM}$ 상에서의 DMAC 구현)

  • Hwang, In-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.959-961
    • /
    • 2003
  • In this paper, we describe implemented DMAC (Direct Memory Access Controller) architecture on Altera's $Excalibur^{TM}$ that includes industry-standard $ARM922T^{TM}$ 32-bit RISC processor core operating at 200 MHz. We implemented DMAC based on AMBA (Advanced Micro-controller Bus Architecture) AHB (Advanced Micro-performance Bus) interface. Implemented DMAC has 8-channel and can extend supportable channel count according to user application. We used round-robin method for priority selection. Implemented DMAC supports data transfer between Memory-to-Memory, Memory-to-Peripheral and Peripheral-to-Memory. The max transfer count is 1024 per a time and it can support byte, half-word and word transfer according to AHB protocol (HSIZE signals). We implemented with VHDL and functional verification using $ModelSim^{TM}$. Then, we synthesized using $LeonardoSpectrum^{TM}$ with Altera $Excalibur^{TM}$ library. We did FPGA P&R and targeting using $Quartus^{TM}$. We can use implemented DMAC module at any system that needs high speed and broad bandwidth data transfers.

  • PDF

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Design of an SDRAM Controller for AMBA AHB-Lite (AMBA AHB 기반 SDRAM 컨트롤러 설계)

  • Kim, Sang Don;Lee, Seung Eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.33-37
    • /
    • 2013
  • In this paper, we introduce a SDRAM controller implemented on FPGA. Modern embedded system adopts SDRAM as a memory to meet the high capacity memory demands. Our SDRAM controller is written in Verilog and verified on an FPGA, demonstrating the functionality along with ARM Cortex-M0, supporting AMBA AHB.

A design of LED pannel control ASCI (LED 전광판 제어 ASIC 의 설계)

  • 이수범;남상길;조경연;김종진
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.839-842
    • /
    • 1998
  • The wide spread of multimedia system demands a large viewin gdesply device which can inform a message to many peoples in open area. This paper is about the design, simulating and testing of a large viewing LED pannel control ASIC(application specific integrated circuit). This LED pannel control ASIC runs on 16 bit microprocessor MC68EC000 and has following functions:16 line interlaced LED pannel controller, memory controller, 16 channel priority inerrupt controller, 2 channel direct memory access controller, 2 channel 12 bit clock and timer, 2 channel infrared remocon receiver, 2 channel RS-232C with 16byte FIFO, IBM PC/AT compatible keyboard interface, battery backuped real time clock, ISA bus controller, battery backuped 256 byte SRAM and watech dog timer. The 0.6micron CMOS sea of gate is used to design the ASIC in amount of about 39,000 gates.

  • PDF

Immune Algorithm Controller Design of DC Motor with parameters variation (DC 모터 파라메터 변동에 대한 면역 알고리즘 제어기 설계)

  • Park, Jin-Hyun;Jun, Hyang-Sig;Lee, Min-Jung;Kim, Hyun-Sik;Choi, Young-Kiu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.353-360
    • /
    • 2002
  • Methods for automatic tuning of PID controllers have been on of the results of the active research on control. The proposed controller also is auto-tuning of PID controller The proposed immune algorithm has an uncomplicated structure and memory-cell mechanism as the optimization algorithm which imitates the principle of humoral immune response. We use the proposed algorithm to solve optimization of PID controller parameters. Up to now, the applications of immune algorithm have been optimization problems with non-varying system parameters. Therefore the usefulness of memory-cell mechanism in immune algorithm is without. And research of memory-cell mechanism does not give us entire satisfaction. This paper proposes the immune algorithm using a memory-cell mechanism which can be the application of system with nonlinear varying parameters. To verify performance of the proposed immune algorithm, the speed control of nonlinear DC motor are performed. The results of Computer simulations represent that the proposed immune algorithm shows a fast convergence speed and a good control performances under the varying system parameters.

Design of Shared Memory Controller Device Driver in Embedded System (임베디드 시스템에서의 공유 메모리 컨트롤러 디바이스 드라이버 설계)

  • Moon, Ji-Hoon;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.703-709
    • /
    • 2014
  • In the AMP(Asymmetric Multiprocessing) based dual core using core-specific operating system in a single processor system, shared memory method is used to send data between processors in dual core. To used shared memory in different operating systems, there is a problem of needing to solving the issue of message communication and synchronization between the two operations systems. In this paper, separate memory controller was used for data sharing between different processor cores in dual core environment. This controller can designate two slave ports to allow simultaneous access from two processors, and in the case of process data simultaneously by two processors, priority order of slave ports is determined through memory mediator. When sending data from A to B processor, SRAM area was logically separated into 8 pages. It allowed using memory area from multiple processes with the size of 4KByte per page, and control register with the size of 4Byte was used to discern the usability of current page.