• 제목/요약/키워드: membrane thickness

검색결과 592건 처리시간 0.024초

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권4호
    • /
    • pp.131-134
    • /
    • 2009
  • The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.

상악 구치부 임플란트 치료를 위해 내원한 환자들에서 Cone-beam CT를 이용한 상악동의 평가 (EVALUATION OF MAXILLARY SINUS USING CONE-BEAM CT IN PATIENTS SCHEDULED FOR DENTAL IMPLANT IN MAXILLARY POSTERIOR AREA)

  • 정창신;조봉혜;황대석;정연화;나경수
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권1호
    • /
    • pp.21-25
    • /
    • 2009
  • Objective: The purpose of this study is to determine the prevalence of sinus disease and abnormalities in patients scheduled for dental implant in maxillary posterior area using cone beam CT. Patients and Method: One hundred five maxillary sinuses in eighty-seven patients who underwent cone beam CT for dental implant in maxillary posterior area were included. Any patients who had previous history of sinus operations were not included. The sinus abnormalities were classified as follows ; normal (membrane thickness <2 mm), mucosal thickening (membrane thickness ${\geq}$ 2 mm and < 6 mm), partial opacification (membrane thickness > 6 mm but not full), full opacification and mucous retention cyst. The relationship between the remaining bone height, sinus symptoms and maxillary sinus abnormality was statistically surveyed. Results: Of 105 maxillary sinuses in 87 patients, 80 (76%) maxillary sinuses showed abnormalities ; 4 of 4 symptomatic patients and 76 of 101 asymptomatic patients. Mucosal thickening was the most common sinus abnormality. Only 3 (4%) of 80 maxillary sinus abnormalities were caused by the odontogenic origin. The prevalence of maxillary sinus abnormalities was higher in the symptomatic group than asymptomatic one (p<0.05). Conclusion: Maxillary sinus abnormalities were very common in the patients who were planning implantation in maxillary posterior areas. This result supports that thorough evaluation for maxillary sinus is recommended when implant treatment is planned for those areas.

고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측 (Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell)

  • 양장식;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

나프록센 함유 방출제어형 패취의 제제설계 및 평가 (Formulation and Evaluation of Controlled Release Patch Containing Naproxen)

  • 이계주;홍석천;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권4호
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to prepare the controlled release adhesive patch containing naproxen. Pressuresensitive adhesive (PSA)-type patch was fabricated by casting of polyisobutylene (PIE.) and mineral oil in toluene. Membrane-controlled release (MCR)-type patch was prepared by the attachment of the controlled release membrane on the PSAtype patch. The membrane was mainly composed of Eudragit, polyethylene glycol(PEG) and glycerin. The drug release profile and skin permeation test with various patches were evaluated in vitro. The release of naproxen from PIE-based PSAtype patch with various loading doses fitted Higuchi's diffusion equation. However, the permeation of naproxen through hairless mouse skin from PSA-type patch followed zero-order kinetics. In MCR-type patch, thickness of controlled release membrane affected on the drug release rate highly. In the composition of membrane, the release rate was decreased as the ratio of Eudragit increased. The drug release from the MCR-type patch followed zero order kinetics. The permeation of naproxen through hairless mouse skin from MCR-type patch showed lag time for the intial release period and didn't fit the zero-order kinetics

  • PDF

Construction of Membrane Sieves Using Stoichiometric and Stress-Reduced $Si_3N_4/SiO_2/Si_3N_4$ Multilayer Films and Their Applications in Blood Plasma Separation

  • Lee, Dae-Sik;Choi, Yo-Han;Han, Yong-Duk;Yoon, Hyun-C.;Shoji, Shuichi;Jung, Mun-Youn
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.226-234
    • /
    • 2012
  • The novelty of this study resides in the fabrication of stoichiometric and stress-reduced $Si_3N_4/SiO_2/Si_3N_4$ triple-layer membrane sieves. The membrane sieves were designed to be very flat and thin, mechanically stress-reduced, and stable in their electrical and chemical properties. All insulating materials are deposited stoichiometrically by a low-pressure chemical vapor deposition system. The membranes with a thickness of 0.4 ${\mu}m$ have pores with a diameter of about 1 ${\mu}m$. The device is fabricated on a 6" silicon wafer with the semiconductor processes. We utilized the membrane sieves for plasma separations from human whole blood. To enhance the separation ability of blood plasma, an agarose gel matrix was attached to the membrane sieves. We could separate about 1 ${\mu}L$ of blood plasma from 5 ${\mu}L$ of human whole blood. Our device can be used in the cell-based biosensors or analysis systems in analytical chemistry.

고분자연료전지 내 촉매 이동 및 노화메커니즘에 관한 연구 (A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC)

  • 이윤희;이기석;윤종진;변정연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.256-263
    • /
    • 2012
  • We studied the degradation phenomenon of Pt catalyst in PEMFC. We used the electron microscope analysis technique including the ultra-microtome pretreatment method, FEG-SEM and TEM analysis methods for analysis of Pt nanoparticles. The Pt catalyst degradation is observed not only in electrode site but also in membrane site. We investigated these various degradation phenomena. The cathode electrode layer thickness is reduced. The size of the catalyst is increased much larger than initial size in membrane site. The catalyst moved from electrode layer to the electrolyte membrane. The rounded shape of catalyst was changed to the polygon. As a result, we found that the catalyst degradation processes of migration and coarsening occurred by the followings mechanisms; (1) dissolution of Pt ; (2) diffusion of Pt ion ; (3) Pt ion chemical reduction in membrane; (4) Coarsening of Pt particles (Ostwald ripening) ; (5) polygon shape change of Pt by {111} plane growth.

Hexamethyldisiioxane의 플라즈마 중합에 의하여 제조된 복합막을 통한 공기중의 휘발성 유기물질의 분리에 관한 연구 (Separation of VOCs from Air through Composite Membranes Prepared by Plasma Polymerization of Hexamethyldisiioxane)

  • 류동현;오세중;손우익;구자경
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.63-65
    • /
    • 1998
  • 1. Introduction : Atmospheric discharge of VOC-contaminated streams in chemical plants and air streams from chemical processes poses a serious environmental problem and entails large financial losses. Such emissions may be reduced by i) adsorption process, ii) absorption process and iii) incineration process. These processes only forbids the air pollutions. Throughout the recent decade, another technique-membrane process has emerged. The separation and recovery of organic vapors by membrane process may have great economic potential. Most of the published research works on the separation of organic vapors from air were performed using silicon rubber membranes. However, it is very difficult to fabricate very thin membranes with less than 1 $u m thickness. Plasma polymerization could be a good technique to generate a thin polymer film. The objective of this work is to find out the optimum condition of plasma polymerization for producing VOC separation membrane. For the objective, composite membranes are prepared through plasma polymerization of hexamethyldisiloxane onto porous substrates under different conditions. The membrane is then subjected to the permeation of permanent gases and VOCs to find the correlations between the physical properties of the penetrant and permeability and selectivity.

  • PDF

제4급 암모늄염을 이용한 과염소산 이온선택성 PVC막 전극 (Perchlorate Ion-Selective PVC Membrane Electrode Based on the Quaternary Ammonium Salts)

  • 안형환;김용렬;강현춘;이한섭;이병철;강안수
    • 멤브레인
    • /
    • 제3권3호
    • /
    • pp.126-135
    • /
    • 1993
  • 감응물질로 제4급 암모늄염을 사용하여 PVC를 지지체로 과염소산이온의 농도 $10^{-6}M$까지 측정가능한 이온 선택성 전극을 제작하였다. 감응물질의 화학적 구조와 함량, 가소제의 종류 및 막 두께에 따른 선형응답 범위와 Nernst의 기울기 등 전극특성을 검토하여, 최적 막조건을 구한 다음 측정가능 pH범위와 여러 방해이온에 대한 선택계수를 비교 검토하였다. 과염소산 이온선택성 전극에서 감응물질의 화학적 구조 즉, 알킬기의 탄소고리수가 증가할수록 선형응답 범위 등 전극 특성은 Aliquat 336P, TOAP, TDAP 및 TDDAP의 순서로 좋아졌다. 가소제는 DBP가 가장 좋았고, 감응물질의 양은 최적 함량 이상에서 적을수록 좋았다. 최적 막 조성은 TDDAP 9.09, PVC 30.3 및 DBP 60.61wt%이었고, 막두께 0.45mm이었다. 이 조건에서 선형응답 범위 $10^{-1}~1.2 {\times} 10^{-6}M$, 검출한계 $5.1{\times}10^{-7}M$ 및 Nernst기울기 $57mV/pClO_4$이었다. 막전위는 pH 4~11 범위에서 pH의 영향을 받지 않았으며, 선택계수 서열은 다음과 같았다. $SCN^->I^->NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

양극산화에 의한 다공성 알루미나 막의 제조시 전해질의 영향 (Effect of Electrolyte on Preperation of Porous Alumina Membrane by Anodic Oxidation)

  • 이창우;함영민;강현섭;장윤호
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1047-1052
    • /
    • 1998
  • 본 연구에서는 시판용 99.8% 금속알루미늄을 정전류 방식을 이용하여 황산, 수산, 인산 및 크롬산 전해조에서 양극산화를 행하여 다공성 알루미나 막을 제조하였다. 양극산화시 전해액의 종류에 따른 반응온도, 전해액의 농도 및 전류밀도에 따라 형성되는 다공성 알루미나 막의 세공직경과 분포, 막의 두께 및 형태와 결정구조를 조사함으로서 각 전해질 용액하에서의 최적 반응조건을 결정하고 우수한 다공성 알루미나 막을 제조하고자 하였다. 황산, 수산전해질하에서는 한외여과(Ultrafiltration)막이, 인산, 크롬산전해질하에서는 정밀여과(Microfiltration)막의 얻어짐을 알수 있었다. 황산, 수산 및 인산 전해조에서 제조된 막의 결정구조는 무정형임을 알 수 있으며, 크롬산 전해조에서 제조된 막은 ${\gamma}-Al_2O_3$의 결정구조를 보이고 있다.

  • PDF

전자빔 증발법 박막 증착을 이용한 양극 산화 알루미늄 템플릿의 나노 포어 가공 연구 (Study on the narrowed nanopores of anodized aluminum oxide template by thin-film deposition using e-beam evaporation)

  • 이승훈;이민영;김천중;김관오;윤재성;유영은;김정환
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.25-29
    • /
    • 2021
  • The fabrication of nanopore membrane by deposition of Al2O3 film using electron-beam evaporation, which is fast, cost-effective, and negligible dependency on substance material, is investigated for potential applications in water purification and sensors. The decreased nanopore diameter owing to increased wall thickness is observed when Al2O3 film is deposited on anodic aluminum oxide membrane at higher deposition rate, although the evaporation process is generally known to induce a directional film deposition leading to the negligible change of pore diameter and wall thickness. This behavior can be attributed to the collision of evaporated Al2O3 particles by the decreased mean free path at higher deposition rate condition, resulting in the accumulation of Al2O3 materials on both the surface and the edge of the wall. The reduction of nanopore diameter by Al2O3 film deposition can be applied to the nanopore membrane fabrication with sub-100 nm pore diameter.