• Title/Summary/Keyword: membrane targeting

Search Result 116, Processing Time 0.025 seconds

Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

  • Maret, Wolfgang
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic ${\beta}$- and ${\alpha}$-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the pathobiochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of ${\beta}$-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Autoimmune encephalitis and epilepsy: evolving definition and clinical spectrum

  • Seo, Joo Hee;Lee, Yun-Jin;Lee, Ki Hyeong;Gireesh, Elakkat;Skinner, Holly;Westerveld, Michael
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.8
    • /
    • pp.291-300
    • /
    • 2020
  • Advances in autoimmune encephalitis studies in the past 10 years have led to the identification of new syndromes and biomarkers that have transformed the diagnostic approach to the disorder. The disorder or syndrome has been linked to a wide variety of pathologic processes associated with the neuron-specific autoantibodies targeting intracellular and plasma membrane antigens. However, current criteria for autoimmune encephalitis are quite dependent on antibody testing and responses to immunotherapy, which might delay the diagnosis. This form of encephalitis can involve the multifaceted presentation of seizures and unexpected behavioral changes. The spectrum of neuropsychiatric symptoms in children is less definitive than that in adults, and the incorporation of clinical, immunological, electrophysiological, and neuroradiological results is critical to the diagnostic approach. In this review, we document the clinical and immunologic characteristics of autoimmune encephalitis known to date, with the goal of helping clinicians in differential diagnosis and to provide prompt and effective treatment.

Biochemical and Biophysical Characterizations of the Interaction between Two PDZ Adapter Proteins NHERF and E3KARP in vitro

  • Hwang, Eun-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3241-3246
    • /
    • 2010
  • NHERF ($Na^+/H^+$ exchanger regulatory factor) and E3KARP (NHE3 kinase A regulatory protein) play important roles in membrane targeting, trafficking and sorting of ion channels, transmembrane receptors and signaling proteins in many tissues. Each of these proteins contains two PDZ (PSD-95/Dlg-1/ZO-1) domains, which mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The interaction between NHERF and E3KARP was investigated by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, His-tagged pull-down experiment, and size-exclusion column (SEC) chromatography. BIAcore experiments revealed that NHERF bound to E3KARP with an apparent $K_D$ of 7 nM. Fluorescence emission spectra of the NHERF-E3KARP complex suggested that the tight interaction between these proteins was accompanied by significant conformational changes in one or both. The CD spectra of NHERF and E3KARP show that the conformational changes of these proteins were dependent on pH and temperature. These results implicate that the NHERF-E3KARP complex allows intracellular signaling complexes to form through PDZ-PDZ interactions.

Studies on the Differentiation of Skeletal Muscle Cells in uitro : The Phosphorylation and Down Regulation of Protein Kinase C in Myoblasts of Chick Embryos (근세포 분화에 관한 연구 계배의 Myoblasts에 있어서 Protein Kinase C (PKC)의 인 산화작용과 Down Regulation)

  • 문현근;최원철
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.161-172
    • /
    • 1992
  • In the short-term treahent of 12-0-tetradecanoylphorbol-13-acetate (TPA) or platelet-derived growth factor (PDGF), the'Wh and PDGF induced the Protein Kinase C (PKC) activation and migration from the cytoplasm to the peripheral nulcear membrane. And the activated PKC which was directly or indirectly stimulated by TPA or PDGF Phosphorylated many kinds of PKC's targeting proteins and induces various biological responses. Especially, the cytoplasmic PKC was phosphorylated within 1 hr and 10 min by TPA-and PDGF-treahent respectivelv. In the long-term treatment of TPA or PDGF, both of them induced the down-regulation and translocation of PKC in the mvoblasts. The down-regulation of PKC isozyrnes, the pattern of PKC I and ll was similar to the PKC 111 isozpnes in the cytoplasm. But in the nucleolus, the TPA did not induce and down-regulation or the inhibition of the immunoreactivity of PKC III antibody. This investigation indicates that each isozvmes of PKC mal be performed the different effects to the down-regulation of the cytoplasm or nucleolus. And douvn-regulated myoblasts contained low immunoreactivity of PKC antibodies.

  • PDF

Proteins as the molecular markers of male fertility

  • Beeram, Eswari
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos and cell fate regulators. It is necessary to know about the markers involved in male fertility in order to develop remedies for the treatment of male infertility. But, the role of the proteins is not limited to particular function in the biological systems. Some of the proteins act as ion channels such as catsper and proteins like Nanos acts as a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is uncertain. Rbm5 is a pre mRNA splicing factor necessary for sperm differentiation whose loss of function results deficit in sperm production. DEFB114 is a beta defensin family protein necessary for sperm motility in LPS challenged mice where as TEX 101 is a plasma membrane specific germ cell protein whose function is not clearly known u to now. Gpr56 is another adhesion protein whose null mutation leads to arrest of production of pups in rats. Amyloid precursor protein role in Alzheimer's disease is already known but it plays an important role in male fertility also but its function is uncertain and has to be considered while targeting APP during the treatment of Alzheimer's disease. The study on amyloid precursor protein in male fertility is a novel thing but requires further study in correlation to alzheimer's disease.

The Transport of Organic Cations in the Small Intestine: Current Knowledge and Emerging Concepts

  • Kim, Moon-Kyoung;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.605-616
    • /
    • 2006
  • A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of the in vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, and in vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.