Browse > Article

The Transport of Organic Cations in the Small Intestine: Current Knowledge and Emerging Concepts  

Kim, Moon-Kyoung (Laboratory of Transporters Targeted Drug Design, College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University)
Shim, Chang-Koo (Laboratory of Transporters Targeted Drug Design, College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University)
Publication Information
Archives of Pharmacal Research / v.29, no.7, 2006 , pp. 605-616 More about this Journal
Abstract
A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of the in vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, and in vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.
Keywords
Organic cations; Organic cation transporter; Small intestine; Knock-out mice;
Citations & Related Records

Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 16
연도 인용수 순위
1 Benowitz, N. L., Pharmacokinetic aspects of cigarette smoking and nicotine addiction. New. Eng. J. Med., 319, 1318-1330 (1988)   DOI   ScienceOn
2 Dresser, M. J., Leabman, M. K., and Giacomini, K. M., Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci., 90, 397-421 (2001)   DOI   ScienceOn
3 Dudeja P. K., Tyagi S., Kavilaveettil, R. J., Gill, R., and Said, H. M., Mechanism of thiamine uptake by human jejunal brushborder membrane vesicles. Am. J. Physiol. Cell. Physiol., 281, C786-792 (2001)   DOI
4 Flagstad, A., Nielsen, P., and Trojaborg, W., Pharmacokinetics and pharmacodynamics of guanidine hydrochloride in a hereditary myasthenia gravis-like disorder in dogs. J. Vet. Pharmacol. Ther., 9, 318-324 (1986)   DOI   ScienceOn
5 Fukuda, A, Saito, H., and Inui, K. I., Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco- 2. J. Pharmacol. Exp. Ther., 302, 532-538 (2002)   DOI   ScienceOn
6 Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E., Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J. Biol. Chem., 272, 10408- 10413 (1997)   DOI   ScienceOn
7 Grundemann, D., Schechinger, B., Rappold, G.. A., and Schomig, E., Molecular identification of the corticosteronesensitive extraneuronal catecholamine transporter. Nature neurosci., 1, 349-352 (1998)   DOI   ScienceOn
8 Hunter, J., Jepson, M. A., Tsuruo, T., Simmons N. L., and Hirst B. H., Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem., 268, 14991-14997 (1993b)
9 Imada-Shirakata, Y., Kotera, T., Ueda, S., and Okuma, M., Serotonin activates electrolyte transport via 5HT2A receptor in colonic crypt cells. Biochem. Biophys. Res. Commun., 230, 437-441 (1997)   DOI   ScienceOn
10 Kim, M. K., Lewei, H., Choi, M. K., Han, Y. H., Kim, D. D., Chung, S. J., and Shim, C. K., Dose dependency in the oral bioavailability of an organic cation model, tributylmethyl ammonium (TBuMA), in rats: association with the saturation of efflux by the P-gp system on the apical membrane of the intestinal epithelium. J. Pharm. Sci., 94, 2644-2655 (2005)   DOI   ScienceOn
11 Koepsell, H., Schmitt, B. M., and Gorboulev, V., Organic cation transporters. Rev. Physiol. Biochem. Pharmacol., 150, 36-90 (2003)   DOI
12 Martel, F., Calhau, C., and Hipolito-Reis, C., Effect of bile duct obstruction on hepatic uptake of 1-methyl-4-phenylpyridinium in the rat. Pharmacol. Res., 37, 497-504 (1998b)   DOI   ScienceOn
13 Lee, K., Ng, C., Brouwer, L. R., and Thakker, D. R., Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 303, 574-580 (2002)   DOI   ScienceOn
14 Martel, F., Vetter, T., Russ, H., Grundemann, D., Azevedo, I., Koepsell, H., and Schomig, E., Transport of small organic cations in the rat liver: The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch. Pharmacol., 354, 320- 326 (1996b)
15 Martel, F., Martins, M. J., Calhau, C., Hipolito-Reis, C., Azevedo, I., Postnatal development of organic cation transport in the rat liver. Pharmacol. Res., 37, 131-136 (1998a)   DOI   ScienceOn
16 McCleskey, E. W. and Almers, W., The $Ca^+$ channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. U.S.A., 82, 7149-7153 (1985)
17 Mizuuchi, H., Katsura, T., Saito, H., Hashimoto, Y., and Inui, K. I., Transport Characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells: Contribution of pHdependent transport system. J. Pharmacol. Exp. Ther., 290, 388-392 (1999)
18 Mizuuchi, H., Katsura, T., Hashimoto, Y., and Inui, K. I., Transepithelial transport of dephenhydramine across monolayers of the human intestinal epithelial cell line Caco-2. Pharm. Res., 17, 539-545 (2000a)   DOI   ScienceOn
19 Muller, J., Lips, K. S., Metzner, L., Neubert, R. H. H., Koepsell, H., and Bransch, M., Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol., 70, 1851-1860 (2005)   DOI   ScienceOn
20 Okuda, M., Saito, H., Urakami, Y., Takano, M., and Inui, K. I., cDNA colonig and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun., 224, 500-507 (1996)   DOI   ScienceOn
21 Paton, D. M. and Webster, D. R., Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin. Pharmacokinet., 10, 477-97 (1985)   DOI   ScienceOn
22 Schievelbein, H. and Barfour, D. J. K., (Ed.), Nicotine and the Tobacco Smoking Habit, Pergamon Press, Oxford, pp.1-15. (1984)
23 Slitt, A. L., Cherrington, N. J., Hartley, D.P., Leazer, T. M., and Klassen, C. D., Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug. Metab. Dispos., 30, 212-219 (2002)   DOI
24 Sugawara-Yokoo, M., Urakami, Y., Koyama, H., Fujikura, K., Masuda, S., Saito, H., Naruse, T., Inui, K. I., and Takata, K., Differential localization of organic cation transporters rOCT1 and OCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem. Cell. Biol., 114, 175-180 (2000)
25 Tsuji, A. and Takami, I., Carrier-mediated intestinal transport of drugs. Pharm. Res., 13, 963-977 (1996)   DOI
26 Urakami, Y., Okuda, M., Masuda, S., Saito, H., and Inui, K. I., Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J. Pharmacol. Exp. Ther., 287, 800-805 (1998)
27 Weber, W. and Kewitz, H., Determination of thiamine in human plasma and its pharmacokinetics. Eur. J. Clin. Pharmacol., 28, 213-219 (1985)   DOI
28 Zhang, L., Dresser, M. J., Gray A. T., Yost S. C., Terashita, S., and Giacomini, K. M., Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol., 51, 913-921 (1997)   DOI
29 Wu, X., Huang, W., Prasad, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther., 290, 1482-1492 (1999)
30 Zeisel S. H., Choline: needed for normal development of memory. J. Am. Coll. Nutr., 19 (suppl.), 528S-531S (2000)   DOI
31 Zwart, R., Verhaagh, S., Buitelaar, M., Popp-Snijder, C., and Barlow, D. P., Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/ Slc22a3-deficient mice. Mol. Cell Biol., 21, 4188-4196 (2001)   DOI   ScienceOn
32 Kuo, S. M., Whitby, B. R., Artursson, P., and Ziemniak, J. A., The contribution of intestinal secretion to the dose-dependent absorption of celiprolol. Pharm. Res., 11, 648-653 (1994)   DOI
33 Martel, F., Calhau, C., and Azevedo, I., Characterizaion of the transport of the organic cation [$^{3}H$]$MPP^+$ in human intestinal epithelial (Caco-2) cells. Naunyn-Schmeideberg's Arch. Pharmacol., 316, 505-513 (2000)
34 Tan, T., Kuramoto, M., Takahashi, T., Nakamura, H., Nakanishi, Y., Imasato, Y., and Yoshimura, H., Characteristics of the gastrointestinal absorption of morphine in rats. Chem. Pharm. Bull., 37, 168-173 (1989)   DOI   ScienceOn
35 Wade, P. R., Chen, J., Jaffe, B., Kassem, I. S., Blakely, R. D., and Gershon, M. D., Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci., 16, 2352-2364 (1996)   DOI
36 Kekuda, R., Prasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Ganapathy, V., Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem., 273, 15971-15979 (1998)   DOI   ScienceOn
37 Zhang, L., Brett, C. M., and Giacomini, K. M., Role of organic cation transporters in drug absorption and elimination. Annu. Rev. Pharmacol. Toxicol., 38, 431-460 (1998)   DOI   ScienceOn
38 Martel F., Grundemann, D., Calhau, C., and Schomig, E., Apical uptake of organic cations by human intestinal Caco-2 cells: putative involvement of ASF transporter. Naunyn-Schmeideberg's Arch. Pharmacol., 313, 40-49 (2001)
39 Martel, F., Martin, M. J., Hipolito-Reis, C., and Azevedo, I., Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Br. J. Pharmacol., 119, 1519-1524 (1996c)   DOI   ScienceOn
40 Engel, G., Hoyer, D., Kalkman, H. O., and Wick, M. B., Identification of 5HT2 receptors on longitudinal muscle of guinea pig ileum. J. Recept. Res., 4, 113-126 (1984)   DOI
41 Martel, F., Martin, M. J., Calhau, C., and Azevedo, I., Comparison between uptake2 and rOCT1: effects of catecholamines, methanephrines and corticosterone. Naunyn-Schmiedeberg's Arch. Pharmacol., 359, 303-309 (1999)   DOI
42 Miyamoto, K., Ganapathy, V., and Leibach, F. H., Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol., 255, G85-G92 (1988)
43 Sekine, T., Kusuhara, H., Utsunomiya-Tate, N., Tsuda, M., Sugiyama, Y., Kanai, N., and Endou, H., Molecular cloning and characterization of high-affinity carnitine transporter. Biochem. Biophys. Res. Commun., 251, 586-591 (1998)   DOI   ScienceOn
44 Katsura, T. and Inui, K. Intestinal absorption of drugs mediated by drug transporters' mechanisms and regulation. Drug. Metab. Pharmacokinet., 18, 1-15 (2003)   DOI   ScienceOn
45 Said H. M., Ortiz, A., Kumar, C. K., Chatterjee, N., Dudeja, P. K., and Rubin, S., Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2. Am. J. Physiol., 277, C645-C651 (1999)   DOI
46 Hunter, J., Hirst, B. H., and Simmons, N. L., Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res., 10, 743-749 (1993a)   DOI
47 Jonker, J. W., Wagenaar, E., Eijl, S., and Schinkel, A. H., Deficiency in the organic cation transporters 1 and 2 (Oct1/ Oct2[Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell Biol., 23, 7902-7908 (2003)   DOI
48 Grundemann, D., Liebich, G.., Kiefer, N., Koster, S., and Schomig, E., Selective substrate for non-neuronal monoamine transporters. Mol. Pharmacol., 56, 1-10 (1999)   DOI
49 Hsing, S., Gatmaitan, Z., and Arias, I. M., The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Gastroenerology, 102, 879- 885 (1992)   DOI
50 Martel, F., Martins, M. J., and Azevedo, I., Inward transport of [$^{3}H$]$MPP^+$ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines. Naunyn-Schmiedeberg's Arch. Pharmacol., 354, 305-311 (1996a)
51 Sekine, T., Cha, S. H., and Endou, H., The multispecific organic anion transporter (OAT) family. Pflugers Arch., 440, 337-350 (2000)   DOI
52 Akaike, N., Yatani, A., Nishi, K., Oyama, Y., and Kuraoka, S., Permeability to various cations of the voltage-dependent sodium channel of rat single heart cells. J. Pharmacol. Exp. Ther., 228, 225-229 (1984)
53 Javitch, J. A., D'Amato, R. J., Strittmatter, S. M., and Snyder, S. H., Parkinsonism-inducing neurotoxin N-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine: uptake of the metabolite Nmethyl- 4-phenylpyridinium by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U.S.A., 82, 2173- 2177 (1985)
54 Kamath, A. V., Darling, I. M., and Morris, A. E., Choline uptake in human intestinal Caco-2 cells is carrier-mediated. J. Nutr., 133, 2607-2611 (2003)
55 Laforenza, U., Orsenigo, M. N., and Rindi, G., A thiamine/$H^2$ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine. J. Membrane Biol., 161, 151-161 (1998)   DOI
56 Wu, X., Huang, W., Ganapathy, M. E., Wang, H., Kekuda, R., Conway S. J., Leibach F. H., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am. J. Physiol., 279, F449- F458 (2000a)
57 Israili, Z. H. and Dayton, P., Enhancement of xenobiotic elimination: role of intestinal excretion. Drug. Metab. Rev., 15, 1123-1159 (1984)   DOI
58 Pritchard JB, Walsh RC, Sweet DH. 1997. Characterization of organic cation transporter 2 (OCT2) isolated from rat kidney. FASEB J 11, A278 (Abstr.)
59 Yabuuchi, H., Tamai, I., Nezu, J., Sakamoto, K., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther., 289, 768-773 (1999)
60 Wu, X., Kekuda, R., Huang, W., Fei, Y. J., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem., 273, 32776-32786 (1998a)   DOI   ScienceOn
61 Bleasby, K., Chauhan, S., and Brown, C. D. A., Characterization of $MPP^+$ secretion across human intestinal Caco-2 cell monolayers: role of P-glycoprotein and a novel $Na^+$-dependent organic cation transport mechanism. Br. J. Pharmacol., 129, 619-615 (2000)   DOI   ScienceOn
62 Grundemann, D., Gorboulev, V., Gambaryan, S., and Koepsell, V. H., Drug Excretion mediated by a new prototype of polyspecific transporter. Nature, 372, 549-552 (1994)   DOI   ScienceOn
63 Mizuuchi, H., Katsura, T., Ashida, K., Hashimoto, Y., and Inui, K. I., Diphenhydramine transport by pH-dependent tertiary amine transport system in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 278, G563-G569 (2000b)   DOI
64 Turnheim, K. and Lauterbach, F., Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa. Biochim. Pharmacol., 26, 99-108 (1977)   DOI   ScienceOn
65 Wu, X., Prasad, P. D., Leibach, F. H., and Ganapathy, V., cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun., 246, 589-595 (1998b)   DOI   ScienceOn
66 Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer- Teuber, I., Karbach, U., Guester, S., Baumann, C., Lang, F., Busch, A. E, and Koepsell, H., Cloning and characterization of two human polyspecific organic cation transporters. D.N.A. Cell. Biol., 16, 871-881 (1997)   DOI   ScienceOn
67 Russ, H., Gliese, M., Sonna, J., and Schomig, E., The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium ($MPP^+$). Naunyn-Schmiedeberg's Arch. Pharmacol., 346, 158-165 (1992)   DOI
68 Karbach, U., Kricke, J., Meyer-Wentrup, F., Gorboulev, V., Volk, C., Loffing-Cueni, D., Kaissling, B., Bachmann, S., and Koepsell, H., Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am. J. Physiol. Renal. Physiol., 279, F679-F687 (2000)   DOI
69 Lazaruk, K. D. A. and Wright, S. H., $MPP^+$ is transported by the TEA-$H^+$ exchanger of renal brush-border membrane vesicles. Am. J. Physiol., 258, F597-F605 (1990)
70 Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., and Tsuji, A., Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419, 107-111 (1997)   DOI   ScienceOn
71 Terashita, S., Dresser, M. J., Zhang, L., Gray, A. T., Yost, S. C., and Giacomini K. M., Molecular cloning and functional expression of a rabbit renal organic cation transporter. Biochim. Biophys. Acta., 1369, 1-6 (1998)   DOI   ScienceOn
72 Turnheim, K. and Lauterbach, F., Interaction between intestinal absorption and secretion of monoquarternary ammonium compounds in guinea pigs – a concept for the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther., 212, 418-424 (1980)
73 Wu, X., George. R. L., Huang, W., Wang, H., Conway, S. J., Leibach, F. H., and Ganapathy, V., Structural and functional characteristics and tissue distribution pattern of rat OCTN1, and organic cation transporter, cloned from placenta. Biochem. Biophys. Acta., 1466, 315-327 (2000b)   DOI   ScienceOn
74 Streich, S., Bruss, M., and Bonisch, H., Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells. Naunyn-Schmiedeberg's Arch. Pharmacol., 353, 328- 333 (1996)   DOI
75 Lee, W. I. and Kim, R. B., Transporters and renal drug elimination. Annu. Rev. Pharmacol. Toxicol., 44, 137-166 (2004)   DOI   ScienceOn
76 de Roos, A. M., Rekker, R. F., and Nauta, W. T., The base strength of substituted 2-(diphenylmethoxy)-N,N-dimethylethylamines. Arzneim. Forsch., 20, 1763-1765 (1970)
77 Jonker, J. W., Wagenaar, E., Mol, C. A. A. M., Buitelaar, M., Koepsell, H., Smit, J. W., and Schinkel, A. H., Reduced hepatic uptake and intestinal excretion of organic cation in mice with a targeted disruption of the organic cation transporter 1 (Oct1[Slc22al]) gene. Mol. Cell Biol., 21, 5471- 5477 (2001)   DOI   ScienceOn
78 Martel, F., Monteiro, R., and Lemos, C., Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transport (SERT) J. Pharmacol. Exp. Ther., 306, 355-362 (2003)   DOI   ScienceOn
79 Sayer, L. M., Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol. Lett., 48, 121-149 (1989)   DOI   ScienceOn
80 Melamed, E., Rosenthal, J., Cohen, O., Globus, M., and Uzzan, A., Dopamine but not norepinephrine or serotonin uptake inhibitors protect mice against neurotoxicity of MPTP. Eur. J. Pharmacol., 226, 179-181 (1985)
81 Neuhoff, S., Ungell, A. L., Zamora, I., and Artursson, P., pHdependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: Implications for drug-drug interactions. Pharm. Res., 20, 1141-1148 (2003)   DOI   ScienceOn
82 Sokol, P. P., Holohan, P. D., and Ross, C. R., The neurotoxins 1- methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles. J. Pharmacol. Exp. Ther., 242, 152-157 (1987)
83 Zeisel, S. H., Dietary choline: biochemistry, physiology, and pharmacology. Annu. Rev. Nutr., 1, 95-121 (1981)   DOI   ScienceOn
84 Koepsell, H., Organic cation transporters in intestine, kidney, liver, and brain. Annu. Rev. Physiol., 60, 243-266 (1998)   DOI   ScienceOn
85 Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K., Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem., 272, 6471-6478 (1997)   DOI   ScienceOn
86 Russ, H., Staudt, K., Martel, F., Gliese, M., and Schomig, E., The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur. J. Neurosci., 8, 1256-1264 (1996)   DOI   ScienceOn
87 Song, I. S., Chung, S. J., and Shim, C. K., Contribution of ion pair complexation with bile salts to biliary excretion of organic cations in rats. Am. J. Physiol., 281, G515-G525 (2001)
88 Tanphaichirt, V., Thiamine. In: Modern Nutrition in Health and Disease, edited by Shils ME, Olsen JA, Shike M. New York: Lea and Febiger, p.359-375 (1994)
89 Schomig, E., Spitzenberger, F., Engelhardt, M., Martel, F., Ording, N., and Grundemann, D., Molecular cloning and characterization of two novel transport proteins from rat kidney. F.E.B.S. Letter 425, 79-86 (1998)   DOI   ScienceOn
90 Cova, E., Laforenza, U., Gastaldi, G.., Sambuy, Y., Tritto, S., Faelli, A., and Ventura, U., Guanidine transport across the apical and basolateral membrane of human intestinal Caco-2 cells is mediated by two different mechanism. J. Nutr., 132, 1995-2003 (2002)
91 Tamai, I., Ohashi, R., Nezu J. I., Yabuuchi, H., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Molecular and functional identification of sodium ion-dependent high affinity human carnitine transporter OCTN2. J. Biol. Chem., 273, 20378- 20382 (1998)   DOI   ScienceOn
92 Wang, D. S., Jonker, J. W., Kato, Y., Kusuhara, H., Schinkel, A. H., and Sugiyama, Y., Involvement of organic cation transporter 1 in hepatic and intestinal disruption of metformin. J. Pharmacol. Exp. Ther., 302, 510-515 (2002)   DOI   ScienceOn
93 Walsh, R. C., Sweet, D. H., Hall, L. A., and Pritchard, J. B., Expression cloning and characterization of a novel organic cation transporter from rat kidney, F.A.S.E.B. J 10, A127 (Abstr.) (1996)
94 Busch A. E., Quester, S., Ulzheimer J. C., Waldegger, S., Gorboulev, V., Arndt, P., Lang, F., and Koepsell, H., Electronic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J. Biol. Chem., 271, 32577-32604 (1996)