• Title/Summary/Keyword: membrane targeting

Search Result 112, Processing Time 0.026 seconds

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

A Structural View of Xenophagy, a Battle between Host and Microbes

  • Kwon, Do Hoon;Song, Hyun Kyu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.

Mechanism of action of ferroptosis and its role in liver diseases

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.159-164
    • /
    • 2023
  • Ferroptosis is a type of regulated cell death recently discovered, characterized by the accumulation of iron-dependent lipid peroxides in the cell membrane, and it involves a complex network of signaling pathways, including iron metabolism, lipid peroxidation, and redox regulation. The dysregulation of these pathways can lead to the induction of ferroptosis and the development of liver diseases, such as alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis, and liver cancer. Studies have demonstrated that targeting key molecules involved in iron metabolism, lipid peroxidation, and redox regulation can reduce liver injury and improve liver function in different liver diseases by inhibiting ferroptosis. Thus, modulation of ferroptosis presents a promising therapeutic target for treating liver diseases. However, further research is required to gain a more comprehensive understanding of the mechanisms underlying the role of ferroptosis in liver diseases and to develop more effective and targeted treatments.

Application and therapeutic effects of sickle red blood cells for targeted cancer therapy (표적항암치료를 위한 겸형적혈구의 응용 및 치료 효과)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2395-2400
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. Sickle red blood cells show natural tumor preferential accumulation without any manipulation due to the adhesive interaction between molecular receptors on the membrane surface and counter-receptor on endothelial cells. In addition, structural changes of microvascular in tumor sites enhances polymerization of sickle red blood cells. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties to quantify its therapeutic effects.

Plant Molecular Farming Using Oleosin Partitioning Technology in Oilseeds

  • Moloney, Maurice-M.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.197-201
    • /
    • 1997
  • Plant seed oil-bodies or oleosomes ate the repository of the neutral lipid stored in seeds. These organelles in many oilseeds may comprise half of the total cellular volume. Oleosomes are surrounded by a half-unit membrane of phospholipid into which are embedded proteins called oleosins. Oleosins are present at high density on the oil-body surface and after storage proteins comprise the most abundant proteins in oilseeds. Oleosins are specifically targeted and anchored to oil-bodies after co-translation on the ER. It has been shown that the amino-acid sequences responsible for this unique targeting reside primarily in the central hydrophobic tore of the oleosin polypeptide. In addition, a signal-like sequence is found near the junction of the hydrophobic domain and ann N-terminal hydrophilic / amphipathic domain. This "signal" which is uncleaved is also essential for correct targeting. Oil-bodies and their associated oleosins may be recovered by floatation centrifugation of aqueous seed extracts. This simple partitioning step results in a dramatic enrichment for oleosins in the oil-body fraction. In the light of these properties, we reasoned that it would be feasible to create fusion proteins on oil-bodies comprising oleosins and an additional valuable protein of pharmaceutical or industrial interest. It was further postulated that if these proteins were displayed on the outer surface of oil-bodies, it would be possible to release them from the purified oil-bodies using chemical or proteolytic cleavage. This could result in a simple means of recovering high-value protein from seeds at a significant (i.e. commercial) scale. This procedure has been successfully reduced to practice for a wide variety of proteins of therapeutic, industrial and food no. The utillity of the method will be discussed using a blood anticoagulant, hirudin, and industrial enzymes as key examples.

  • PDF

Targeting Analysis of Lumenal Proteins of Chloroplast of Wheat using Proteomic Techniques

  • Kamal, Abu Hena Mostafa;Kim, Da-Eun;Oh, Myoung-Won;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Uozumi, Nobuyuki;Choi, Jong-Soon;Cho, Kun;Woo, Sun-Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.14-14
    • /
    • 2010
  • Plastid proteomics are essential organelles present in virtually all cells in plants and green algae. Plastids are responsible for the synthesis and storage of key molecules required for the basic architecture and functions of plant cells. The proteome of plastid, and in particular of chloroplast, have received significant amounts of attention in recent years. Various fractionation and mass spectrometry (MS) techniques have been applied to catalogue the chloroplast proteome and its sub-organelles compartments. To better understanding the function of the lumenal sub-organelles within the thylakoid network, we have carried out a systematical analysis and identification of the lumenal proteins in the thylakoid of wheat by using Tricine-SDS-PAGE, and LTQ-ESI-FTICR mass spectrometry followed by SWISS-PROT database searching. We isolation and fractionation these membrane from fully developed wheat leaves using a combination of differential and gradient centrifugation couple to high speed ultra-centrifuge. After collecting all proteins to eliminate possible same proteins, we estimated that there are 407 different proteins including chloroplast, chloroplast stroma, lumenal, and thylakoid membrane proteins excluding 20 proteins, which were identified in nucleus, cytoplasm and mitochondria. A combination of these three programs (PSORT, TargetP, TMHMM, and TOPPRED) was found to provide a useful tool for evaluating chloroplast localization, transit peptide, transmembranes, and also could reveal possible alternative processing sites and dual targeting. Finally, we report also sub-cellular location specific protein interaction network using Cytoscape software, which provides further insight into the biochemical pathways of photosynthesis. The present work helps understanding photosynthesis process in wheat at the molecular level and provides a new overview of the biochemical machinery of the thylakoid in wheat.

  • PDF

Phase I Clinical Trial of Prostate-Specific Membrane Antigen-Targeting 68Ga-NGUL PET/CT in Healthy Volunteers and Patients with Prostate Cancer

  • Minseok Suh;Hyun Gee Ryoo;Keon Wook Kang;Jae Min Jeong;Chang Wook Jeong;Cheol Kwak;Gi Jeong Cheon
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.911-920
    • /
    • 2022
  • Objective: 68Ga-NGUL is a novel prostate-specific membrane antigen (PSMA)-targeting tracer based on Glu-Urea-Lys derivatives conjugated to a 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) chelator via a thiourea-type short linker. This phase I clinical trial of 68Ga-NGUL was conducted to evaluate the safety and radiation dosimetry of 68Ga-NGUL in healthy volunteers and the lesion detection rate of 68Ga-NGUL in patients with prostate cancer. Materials and Methods: We designed a prospective, open-label, single-arm clinical trial with two cohorts comprising six healthy adult men and six patients with metastatic prostate cancer. Safety and blood test-based toxicities were monitored throughout the study. PET/CT scans were acquired at multiple time points after administering 68Ga-NGUL (2 MBq/kg; 96-165 MBq). In healthy adults, absorbed organ doses and effective doses were calculated using the OLINDA/EXM software. In patients with prostate cancer, the rates of detecting suspicious lesions by 68Ga-NGUL PET/CT and conventional imaging (CT and bone scintigraphy) during the screening period, within one month after recruitment, were compared. Results: All 12 participants (six healthy adults aged 31-32 years and six prostate cancer patients aged 57-81 years) completed the clinical trial. No drug-related adverse events were observed. In the healthy adult group, 68Ga-NGUL was rapidly distributed, with the highest uptake in the kidneys. The median effective dose coefficient was calculated as 0.025 mSv/MBq, and cumulative activity in the bladder had the highest contribution. In patients with metastatic prostate cancer, 229 suspicious lesions were detected using either 68Ga-NGUL PET/CT or conventional imaging. Among them, 68Ga-NGUL PET/CT detected 199 (86.9%) lesions and CT or bone scintigraphy detected 114 (49.8%) lesions. Conclusion: 68Ga-NGUL can be safely applied clinically and has shown a higher detection rate for the localization of metastatic lesions in prostate cancer than conventional imaging. Therefore, 68Ga-NGUL is a valuable option for prostate cancer imaging.

Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface (CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할)

  • Han, Ji-Woong;Lee, Hye-Ja;Kim, Jin-Mi;Choi, Eun-Young;Chung, Hyun-Joo;Lim, Soo-Bin;Choi, Jang-Won;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

Identification of Proteins Interacting with C- Terminal Region of Human Ankyrin-G

  • Lee, Yeong-Mi;Lee, Min-A;Park, Jae-Kyoung;Kim, Myong-Shin;Jeon, Eun-Bee;Park, Su-Il;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.159-165
    • /
    • 2003
  • Ankyrins are a ubiquitously expressed family of intracellular adaptor proteins involved in targeting diverse proteins to specialized membrane domains in both the plasma membrane and the endoplasmic reticulum. Recently, the studies with C-terminus of ankyrins have identified that ankyrin-B is capable of interacting with Hsp40 and sAnkl is capable of interacting with obscurin and titin, but the function of C-terminal domain of ankyrin-G remains unknown. To identify proteins interacting C-terminus of ankyrin-G, we used the C-terminus of ankyrin-G as a bait for a yeast two-hybrid screen of brain cDNA library. Approximately 1.33$\times$l0$^6$ transformants were screened, of which 13 positive clones were obtained as determined by activation of HIS3, ADE2 and MELl reporter genes. Sequence analyses of these 13 plasmids revealed that cDNA inserts of 13 colonies showed highly homologous to 11 genes, including 5 known (i.e., Na$^+$/K$^+$ ATPase $\beta$1, SERBPl, UTF2, cytochrome C oxidase and collagen IV $\alpha$2) and 6 unknown genes. The evaluation of the proteins that emerge from these experiments provides a rational approach to investigate the those proteins significant in interaction with ankyrin-G.

  • PDF

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.