Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2274

A Structural View of Xenophagy, a Battle between Host and Microbes  

Kwon, Do Hoon (Department of Life Sciences, Korea University)
Song, Hyun Kyu (Department of Life Sciences, Korea University)
Abstract
The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.
Keywords
Galectin-8; Legionella; NDP52; RavZ; Salmonella;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, B.W., Jung, Y.O., Kim, M.K., Kwon, D.H., Park, S.H., Kim, J.H., Kuk, Y.B., Oh, S.J., Kim, L., Kim, B.H., et al. (2017). ACCORD: an assessment tool to determine the orientation of homodimeric coiledcoils. Sci. Rep. 7, 43318.   DOI
2 Klionsky, D.J., and Schulman, B.A. (2014). Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336-345.   DOI
3 Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.   DOI
4 Kwon, D.H., Kim, L., Kim, B.W., Kim, J.H., Roh, K.H., Choi, E.J., and Song, H.K. (2017a). A novel conformation of the LC3-interacting region motif revealed by the structure of a complex between LC3B and RavZ. Biochem. Biophys. Res. Commun. 490, 1093-1099.   DOI
5 Kwon, D.H., Kim, S., Jung, Y.O., Roh, K.H., Kim, L., Kim, B.W., Hong, S.B., Lee, I.Y., Song, J.H., Lee, W.C., et al. (2017b). The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane. Autophagy 13, 70-81.   DOI
6 Levine, B. (2005). Eating oneself and uninvited guests: autophagyrelated pathways in cellular defense. Cell 120, 159-162.
7 Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., and Randow, F. (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418.   DOI
8 Wen, X., and Klionsky, D.J. (2016). An overview of macroautophagy in yeast. J. Mol. Biol. 428, 1681-1699.   DOI
9 Yang, A., Pantoom, S., and Wu, Y.W. (2017). Elucidation of the antiautophagy mechanism of the Legionella effector RavZ using semisynthetic LC3 proteins. Elife 6, e23905.
10 Yoshii, S.R., and Mizushima, N. (2017). Monitoring and Measuring Autophagy. Int. J. Mol. Sci. 18, 1865.   DOI
11 Chen, W., Biswas, T., Porter, V.R., Tsodikov, O.V., and Garneau-Tsodikova, S. (2011). Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl. Acad. Sci. USA 108, 9804-9808.   DOI
12 Zaffagnini, G., and Martens, S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714-1724.   DOI
13 Zhang, R.G., Scott, D.L., Westbrook, M.L., Nance, S., Spangler, B.D., Shipley, G.G., and Westbrook, E.M. (1995). The three-dimensional crystal structure of cholera toxin. J. Mol. Biol. 251, 563-573.   DOI
14 Behrends, C., and Fulda, S. (2012). Receptor proteins in selective autophagy. Int. J. Cell Biol. 2012, 673290.
15 Boyle, K.B., and Randow, F. (2013). The role of 'eat-me' signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol. 16, 339-348.   DOI
16 Celli, J. (2012). LRSAM1, an E3 Ubiquitin ligase with a sense for bacteria. Cell Host. Microbe 12, 735-736.   DOI
17 Choy, A., Dancourt, J., Mugo, B., O'Connor, T.J., Isberg, R.R., Melia, T.J., and Roy, C.R. (2012). The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072-1076.   DOI
18 Davis, J., Wang, J., Tropea, J.E., Zhang, D., Dauter, Z., Waugh, D.S., and Wlodawer, A. (2008). Novel fold of VirA, a type III secretion system effector protein from Shigella flexneri. Protein Sci. 17, 2167-2173.   DOI
19 Levine, B., and Klionsky, D.J. (2017). Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker's yeast fuel advances in biomedical research. Proc. Natl. Acad. Sci. USA 114, 201-205.   DOI
20 Fan, E., O'Neal, C.J., Mitchell, D.D., Robien, M.A., Zhang, Z., Pickens, J.C., Tan, X.J., Korotkov, K., Roach, C., Krumm, B., et al. (2004). Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. Int. J. Med. Microbiol. 294, 217-223.   DOI
21 Levine, B., Mizushima, N., and Virgin, H.W. (2011). Autophagy in immunity and inflammation. Nature 469, 323-335.   DOI
22 Li, S., Wandel, M.P., Li, F., Liu, Z., He, C., Wu, J., Shi, Y., and Randow, F. (2013). Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal. 6, ra9.   DOI
23 Liu, X.M., and Du, L.L. (2015). A selective autophagy pathway takes an unconventional route. Autophagy 11, 2381-2382.   DOI
24 Liu, L., Sakakibara, K., Chen, Q., and Okamoto, K. (2014). Receptormediated mitophagy in yeast and mammalian systems. Cell Res. 24, 787-795.   DOI
25 Manzanillo, P.S., Ayres, J.S., Watson, R.O., Collins, A.C., Souza, G., Rae, C.S., Schneider, D.S., Nakamura, K., Shiloh, M.U., and Cox, J.S. (2013). The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516.   DOI
26 Maruyama, T., and Noda, N.N. (2018). Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J. Antibiot. (Tokyo). 71, 72-78.   DOI
27 Merritt, E.A., Sarfaty, S., van den Akker, F., L'Hoir, C., Martial, J.A., and Hol, W.G. (1994). Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166-175.
28 Mizushima, N. (2011). Autophagy in protein and organelle turnover. Cold Spring Harb. Symp. Quant. Biol. 76, 397-402.
29 Farre, J.C., and Subramani, S. (2016). Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537-552.
30 Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398.   DOI
31 Gangwer, K.A., Mushrush, D.J., Stauff, D.L., Spiller, B., McClain, M.S., Cover, T.L., and Lacy, D.B. (2007). Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl. Acad. Sci. USA 104, 16293-16298.   DOI
32 Germane, K.L., Ohi, R., Goldberg, M.B., and Spiller, B.W. (2008). Structural and functional studies indicate that Shigella VirA is not a protease and does not directly destabilize microtubules. Biochemistry 47, 10241-10243.   DOI
33 He, H., Dang, Y., Dai, F., Guo, Z., Wu, J., She, X., Pei, Y., Chen, Y., Ling, W., Wu, C., et al. (2003). Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J. Biol. Chem. 278, 29278-29287.   DOI
34 Heckmann, B.L., Boada-Romero, E., Cunha, L.D., Magne, J., and Green, D.R. (2017). LC3-Associated Phagocytosis and Inflammation. J. Mol. Biol. 429, 3561-3576.   DOI
35 Neves, D., Job, V., Dortet, L., Cossart, P., and Dessen, A. (2013). Structure of internalin InlK from the human pathogen Listeria monocytogenes. J. Mol. Biol. 425, 4520-4529.   DOI
36 Holmner, A., Lebens, M., Teneberg, S., Angstrom, J., Okvist, M., and Krengel, U. (2004). Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 $\AA$ crystal structure reveals the details. Structure 12, 1655-1667.   DOI
37 Hong, S.B., Kim, B.W., Lee, K.E., Kim, S.W., Jeon, H., Kim, J., and Song, H.K. (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18, 1323-1330.   DOI
38 Hong, S.B., Kim, B.W., Kim, J.H., and Song, H.K. (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr. D Biol. Crystallogr. 68, 1409-1417.   DOI
39 Nah, J., Yuan, J., and Jung, Y.K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38, 381-389.   DOI
40 Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467.   DOI
41 Ng, A., and Xavier, R.J. (2011). Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy 7, 1082-1084.   DOI
42 Ng, A.C., Eisenberg, J.M., Heath, R.J., Huett, A., Robinson, C.M., Nau, G.J., and Xavier, R.J. (2011). Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA 108 Suppl 1, 4631-4638.   DOI
43 Noad, J., von der Malsburg, A., Pathe, C., Michel, M.A., Komander, D., and Randow, F. (2017). LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-kappaB. Nat. Microbiol. 2, 17063.   DOI
44 Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. (2005). Escape of intracellular Shigella from autophagy. Science 307, 727-731.   DOI
45 Pantoom, S., Yang, A., and Wu, Y.W. (2017). Lift and cut: Anti-host autophagy mechanism of Legionella pneumophila. Autophagy 13, 1467-1469.   DOI
46 Huang, J., and Brumell, J.H. (2014). Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101-114.   DOI
47 Perrin, A.J., Jiang, X., Birmingham, C.L., So, N.S., and Brumell, J.H. (2004). Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol. 14, 806-811.   DOI
48 Rahighi, S., and Dikic, I. (2012). Selectivity of the ubiquitin-binding modules. FEBS Lett. 586, 2705-2710.   DOI
49 Horenkamp, F.A., Kauffman, K.J., Kohler, L.J., Sherwood, R.K., Krueger, K.P., Shteyn, V., Roy, C.R., Melia, T.J., and Reinisch, K.M. (2015). The Legionella anti-autophagy effector RavZ targets the autophagosome via PI3P- and curvature-sensing motifs. Dev. Cell 34, 569-576.   DOI
50 Huang, J., and Klionsky, D.J. (2007). Autophagy and human disease. Cell Cycle 6, 1837-1849.   DOI
51 Huett, A., Heath, R.J., Begun, J., Sassi, S.O., Baxt, L.A., Vyas, J.M., Goldberg, M.B., and Xavier, R.J. (2012). The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12, 778-790.   DOI
52 Ji, C.H., and Kwon, Y.T. (2017). Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol. Cells 40, 441-449.
53 Kim, K.H., An, D.R., Yoon, H.J., Yang, J.K., and Suh, S.W. (2014). Structure of Mycobacterium smegmatis Eis in complex with paromomycin. Acta Crystallogr. F Struct. Biol. Commun. 70, 1173-1179.
54 Kim, J.H., and Song, H.K. (2015). Swapping of interaction partners with ATG5 for autophagosome maturation. BMB Rep. 48, 129-130.   DOI
55 Kim, K.H., An, D.R., Song, J., Yoon, J.Y., Kim, H.S., Yoon, H.J., Im, H.N., Kim, J., Kim do, J., Lee, S.J., et al. (2012). Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl. Acad. Sci. USA 109, 7729-7734.   DOI
56 Kim, B.W., Hong, S.B., Kim, J.H., Kwon, D.H., and Song, H.K. (2013). Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat. Commun. 4, 1613.   DOI
57 Shen, Y., Guo, Q., Zhukovskaya, N.L., Drum, C.L., Bohm, A., and Tang, W.J. (2004). Structure of anthrax edema factor-calmodulinadenosine 5'-(alpha,beta-methylene)-triphosphate complex reveals an alternative mode of ATP binding to the catalytic site. Biochem. Biophys. Res. Commun. 317, 309-314.   DOI
58 Renshaw, P.S., Lightbody, K.L., Veverka, V., Muskett, F.W., Kelly, G., Frenkiel, T.A., Gordon, S.V., Hewinson, R.G., Burke, B., Norman, J., et al. (2005). Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 24, 2491-2498.   DOI
59 Santelli, E., Bankston, L.A., Leppla, S.H., and Liddington, R.C. (2004). Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 430, 905-908.   DOI
60 Satoo, K., Noda, N.N., Kumeta, H., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28, 1341-1350.   DOI
61 Tattoli, I., Sorbara, M.T., Philpott, D.J., and Girardin, S.E. (2012). Bacterial autophagy: the trigger, the target and the timing. Autophagy 8, 1848-1850.   DOI
62 Shin, D.M., Jeon, B.Y., Lee, H.M., Jin, H.S., Yuk, J.M., Song, C.H., Lee, S.H., Lee, Z.W., Cho, S.N., Kim, J.M., et al. (2010). Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 6, e1001230.   DOI
63 Sorbara, M.T., and Girardin, S.E. (2015). Emerging themes in bacterial autophagy. Curr. Opin. Microbiol. 23, 163-170.   DOI
64 Svenning, S., and Johansen, T. (2013). Selective autophagy. Essays Biochem. 55, 79-92.   DOI
65 Thurston, T.L., Ryzhakov, G., Bloor, S., von Muhlinen, N., and Randow, F. (2009). The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221.   DOI
66 Kim, B.-W., Kwon, D.H., and Song, H.K. (2016). Structure biology of selective autophagy receptors. BMB Rep. 49, 73-80.   DOI
67 Kim, J.H., Hong, S.B., Lee, J.K., Han, S., Roh, K.H., Lee, K.E., Kim, Y.K., Choi, E.J., and Song, H.K. (2015). Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11, 75-87.   DOI