• Title/Summary/Keyword: membrane system

Search Result 2,413, Processing Time 0.039 seconds

Continuously Recycling Sterilization of Yakju(Rice Wine) Using Pulsed Electric Fields (고전장펄스를 이용한 약주의 연속 재순환 살균)

  • Kim, Su-Yeon;Mok, Chul-Kyoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.410-415
    • /
    • 1999
  • Yakju was sterilized with high-voltage pulses of short time of a continuous pulsed electric field (PEF) system. The initial microbial counts of Yakju were $2.2{\times}10^{5}$ CFU/mL for total aerobes. The pH, acidity and electric conductivity of Yakju were 3.82, 0.37% and 1.24 mS/cm, respectively. Yakju was treated with exponential-wave formed electric pulses of 100 Hz for $0{\sim}4000{\mu}s$ under the field strength of $20{\sim}35\;kV/cm$. The lethal effect of electric fields on microorganisms was resulted from the breakdown of the cell membrane induced by the transmembrane electric potential. The critical values of the external field for the sterilization were 16.0 kV/cm for total aerobes. Logarithmic survival rates decreased linearly at low electric field strength, but curvilinearly at high electric field strength with treatment time. The sterilization of Yakju was more largely affected by the electric field strength than by the treatment time. Any changes in pH, acidity, and the growth of microorganisms were not found in the PEF treated Yakju during the storage at both $4^{\circ}C\;and\;30^{\circ}C$.

  • PDF

A Study on the Inhibition of Skin Pigmentation by Lobaric Acid as Protease Activated Receptor-2 Antagonist (Protease Activated Receptor-2의 길항제로서 Lobaric Acid의 피부 색소침착 억제 효능 연구)

  • Goo, Jung Hyun;Lee, Ji Eun;Myung, Cheol Hwan;Park, Jong Il;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.243-252
    • /
    • 2015
  • Melanosome, the pigment granule in melanocyte, determines the color of skin when it moves into the keratinocyte. Inhibition of melanosome transfer from melanocyte to keratinocyte results in skin depigmentation. Protease activated receptor-2 (PAR-2) is involved in signal transduction systems via cell membrane and increases the melasome transfer when it is activated by cleavage of their extracellular amino acid sequence by trypsin or by a peptide such as SLIGKV. Here, we showed that lobaric acid inhibited PAR-2 activation and affected the mobilization of $Ca2^+$. The uptake of fluorescent microspheres and isolated melanosomes from melan-a melanocytes to keratinocytes induced by SLIGKV were inhibited by lobaric acid. Also, confocal microscopy studies illustrated a decreased melanosome transfer to keratinocytes in melanocyte-keratinocyte co-culture system by lobaric acid. In addition, lobaric acid induced visible skin lightening effect in human skin tissue culture model, melanoderm$^{(R)}$. Our data suggest that lobaric acid could be an effective skin lightening agent that works via regulation of phagocytic activity of keratinocytes.

Effect of Electrolyzed Water and Organic Acids on the Growth Inhibition of Listeria monocytogenes on Lettuce (전해수 및 유기산처리에 의한 양상치에 오염된 Listeria monocytogenes의 생육저해)

  • Park Boo-Kil;Oh Min-Hee;Oh Deog-Hwan
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.530-537
    • /
    • 2004
  • This study was conducted to determine the inactivation effect of electrolyzed water and organic acids either alone or in combination on L. monocytogenes or natural microflora on lettuce. Acidic electrolyzed water completely inactivated L. monocytogenes in broth system within 60 sec, but alkalin electrolyzed water caused approximate 1.7 log CFU/g reduction. However, acidic electrolyzed water reduced only 2.5 log CFU/g of L. monocytogenes on lettuce, and similar antimicrobial effect was observed with alkalin electrolyzed water. In the meantime, acidic and alkaline electrolyzed water caused approximately 2 log CFU/g reduction compared to control, whereas both electrolyzed water combined with $1\%$ organic acids ranged from 2.6 to 3.7 log CFU/g reduction. Among the organic acids, both electrolyzed water combined with $1\%$ citric acid showed the strongest synergistic antimicrobial effect to reduce L. monocytogenes on lettuce as well as total counts, yeast and molds. When antimicrobials, alone or in combination were treated into L. monocytogenes inoculated lettuce at $5^{\circ}C\;and\;15^{\circ}C$ for designed periods, the combined alkalin electrolyzed water with $1\%$ citric acid showed the greatest potential to inhibit growth of the bacteria. According to Scanning Electron Microscopy(SEM), the treatment of electrolyzed alkali water in combination with $1\%$ citric acid highly reduced the growth of the L. monocytogenes compared to single treatment and resulted in causing the destruction of cell membrane.

Ultrastructure of Oocytes During Oogenesis and Oocyte Degeneration Associated with Follicle Cells in Female Sinonovacula constricta(BIVALVIA: PHARIDAE) in Western Korea

  • Chung, Ee-Yung;Ko, Cheol-Hwan;Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.313-319
    • /
    • 2008
  • The ultrastructure of oocytes during oogenesis and oocyte degeneration associated with follicle cells in female Sinonovacula constricta(Lamarck, 1818) were investigated by electron microscope observations. Ovarian follicles are surrounded by a matrix of vesicular connective tissue cells(VCT cells). VCT cells contain large quantities of glycogen particles and several lipid droplets in their cytoplasm. It is suggested that VCT cells act as a source of nutrients for vitellogenesis during oogenesis. In early vitellogenic oocytes, several coated vesicles, which appear at the basal region of the oocyte, lead to the formation of membrane-bound vesicles via endocytosis. The uptake of nutritive materials in coated vesicles formed by endocytosis appears through the formation of coated pits on the oolemma during vitellogenesis. During the late stage of oogenesis, yolk precursors(yolk granules), mitochondria and lipid droplets are present in the cytoplasm of late vitellogenic oocytes. In particular, proteinaceous yolk granules containing several different components are intermingles and form immature yolk granules. In the mature oocyte, small immature yolk granules are intermingled and form large mature yolk granules. Vitellogenesis occurs through a process of autosynthesis, involving combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm of vitellogenic oocytes. The process of heterosynthesis is where extraovarian precursors are incorporated into oocytes by endocytosis at the basal region of early vitellogenic oocytes before the formation of the vitelline coat. Follicle cells appear to play an important role in vitellogenesis and oocyte degeneration. The functions of attached follicle cells to the oocyte during oocyte degeneration are phagocytosis and digestion of phagosomes originating from oocyte degeneration. After digestion of phagosomes, it is assumed that the function of follicle cells can permit a transfer of yolk precursors necessary for vitellogenesis and allows for the accumulation of glycogen and lipid during oocyte degeneration, which can be employed by vitellogenic oocytes. Follicle cells of S. constricta may possess a lysosomal system for induction of oocyte breakdown and might resorb phagosomes in the cytoplasm for nutrient accumulation during oocyte degeneration.

Mode of Action of Antimicrobial Peptides Identified from Insects (곤충 유래 항균 펩타이드의 작용 기작)

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.715-723
    • /
    • 2015
  • Insects represent the largest class within the animal kingdom in terms of species number. Humans had been utilized insect in the broad area, including food, agriculture, industry, pharmaceuticals and so on. At present, insects are emerging as a leading group for identifying and extracting novel bioactive substances due to enormous number and a high nutritional value. Insects rely on a suite of systemic response to resist infection such as immune cells, hemocytes, activation of enzymes cascades, and antimicrobial peptide/protein. Among the substances, antimicrobial peptides (AMPs) are main components of potent antimircrobial innate defense system into the insect hemolymph. AMPs raise influential candidate as avenue to resolve the development of antibiotic-resistant microbial organism. Insect AMPs are classified into four main classes: cecropins, insect defensins, glycine/proline-rich peptides. Insect AMPs have been purified, over 150. In this review, AMPs derived from several insects were summarized including honey bee, dung beetle, butterfly and longicorn beetle. These peptides almost exhibited potent antimicrobial activities against human microbial pathogens without causing remarkable hemolysis to erythrocytes excluding melittin, and their mode of action(s) are based on disruption of the plasma membrane or fungal apoptosis. Therefore, study of insect AMPs is expected to be useful for designing novel therapeutic antimicrobial applications.

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF

Enhancement of Antimicrobial Activity of Nano-Encapsulated Horseradish Aqueous Extracts Against Food-Borne Pathogens (고추냉이 수용성 추출물의 나노 입자화를 통한 식중독 미생물에 대한 항균 활성 증진)

  • Seo, Yong-Chang;Choi, Woon-Yong;Kim, Ji-Seon;Zou, Yun-Yun;Lee, Choon-Geun;Ahn, Ju-Hee;Shin, Il-Shik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.389-397
    • /
    • 2010
  • This work was to improve antimicrobial activities of horseradish by encapsulated with edible biopolymers such as lecithin and gelatin since it has been difficult to directly use horseradish extracts into foods and food containers due to its strong and undesirable flavors. It was shown that most of the nanoparticles containing the extracts were well formed in round shape with below 400 nm diameter as well as fairly stable and less odd flavors in various pH ranges by measuring zeta potentials. The encapsulation efficiencies of nanoparticles were estimated as 66.6% and 53.4% for lecithin and gelatin, respectively. Minimal Inhibitory Concentration (MIC) of both nanoparticles against G(+), Listeria monocytogenes and G(-), Salmonella typhimurium were also measured as 79 ppm based on AIT concentrations in the extracts, whose activities were about 65% higher than the case of adding crude extract. It was also found that the nanoparticles efficiently penetrated into the cell membrane and started to destruct the cells after 6 hours cultivation under Transmision Electron Microscopy observation. These results prove that the nano-encapsulation of the horseradish extracts can be employed to directly treat into the foods and food containers for antimicrobial purposes with the aids of aerosolization system, by using small amounts of the extracts and having less flavors due to masking effects of nanoparticles.

Purification and Assay of Extracellular Autolysin from Moraxella sp. CK-l (Moraxella sp. CK-1의 세포외 Autolysin의 분리 정제 및 활성도 측정)

  • 오영상;이장현;한명수;윤문영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Moraxella sp. CK-l is known to inhibits the growth of Anabaena cylindrica, a cyanobacterium. It has been documented that the ability of this growth inhibition of Anabaena cylindrica was attributed to extracellular autolysin from Moraxella sp. CK-l. However, it remains to be elucidated identification and characterization of autolysin have yet been elucidated. In this study, we tried to purify and identify autolysin secreted from Moraxella sp. CK-l. Cells were grown in a complex liquid medium (BGC-11) and culture supernatants were collected, followed by ammonium sulfate fractionation. Fractions were further separated with anion exchange column, Mono-Q, in FPLC system and analyzed by SDS/PAGE. The fraction containing high autolysin activity showed a single distinct protein peak in anion column and molecular mass of about 17 kDa in SDS/PAGE. Nterminal amino acid sequencing of the protein was analyzed, of which result showed the homology with some proteases, including extracellular serine protease, Dichelobacter nodosus.

Effects of rhBMP-2 with various carriers on bone regeneration in rat calvarial defect (백서 두개골 결손에서 rhBMP-2와 다양한 carrier의 골재생 유도효과)

  • Lee, Seo-Kyoung;Kim, Ji-Sun;Kang, Eun-Jung;Eum, Tae-Kwan;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.125-134
    • /
    • 2008
  • Purpose: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study evaluated the bone regenerative effect of rhBMP-2 delivered with different carrier systems. Materials and Methods: 8 mm critical-sized rat calvarial defects were used in 60 male Sprague-Dawley rats. The animals were divided into 6 groups containing 10 animals each. Two groups were controls that had no treatment and absorbable collagen membrane only. 4 groups were experimentals that contained rhBMP-2 only and applied with absorbable collagen sponge($Collatape^{(R)}$), $MBCP^{(R)}$, Bio-$Oss^{(R)}$ each. The histological and histometric parameters were used to evaluate the defects after 2- or 8-week healing period. The shape and total augmented area were stable in all groups over the healing time. Results: New bone formation was significantly greater in the rhBMP-2 with carrier group than control group. rhBMP-2/ACS was the highest in bone density but gained less new bone area than rhBMP-2/$MBCP^{(R)}$ and rhBMP-2/Bio-$Oss^{(R)}$. The bone density after 8 weeks was greater than that after 2 weeks in all groups. However, rhBMP-2 alone failed to show the statistically significant difference in new bone area and bone density compared to control group. Also $MBCP^{(R)}$ and Bio-$Oss^{(R)}$ particles remained after 8 weeks healing period. Conclusion: These results suggest that rhBMP-2 with carrier system is an excellent inductive agent for bone formation and we can use it as the predictable bone tissue engieering technique. Future study will likely focus on the kinetics of BMP release and development of carriers that is ideal for it.

Immuno-chromatographic Analysis for HPV-16 and 18 E7 Proteins as a Biomarker of Cervical Cancer Caused by Human Papillomavirus

  • Kim, Joo-Ho;Cho, Il-Hoon;Seo, Sung-Min;Kim, Ji-Sook;Oh, Kyu-Ha;Kang, Heun-Soo;Kim, In-Gyu;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2999-3005
    • /
    • 2009
  • Among the more than 120 different types of human papillomavirus (HPV), types 16 and 18 have been known to be high risk agents that cause cervical cancer. We examined, in an immuno-chromatographic analysis, the potential of using the early gene product, E7 protein, as a diagnostic marker of cervical cancer caused by HPV. We developed monoclonal antibodies specific to HPV-16 and 18 E7 proteins that were produced from bacterial cells using gene recombinant technology. For each E7 protein, the optimal antibody pair was selected using the immuno-chromatographic sandwichtype binding system based on the lateral flow through membrane pores. Under these conditions, this rapid testing assay had a detection capability as low as 2 ng/mL of E7 protein. Furthermore, since viral analysis required the host cell to be lysed using chemicals such as detergents, it was possible that the E7 protein was structurally damaged during this process, which would result in a decrease in detection sensitivity. Therefore, we examined the detrimental effects caused by different detergents on the E7 protein using HeLa cells as the host. In these experiments, we found that the damage caused by the detergent, nonylphenylpolyethylene glycol (NP-40), was minimal relative to Triton X-100 commonly used for the cell lysis. Temperature also affected the stability of the E7 protein, and we found that the E7 protein was stabilized at 4$^{\circ}C$ for about 2 h, which was 4 times longer than at room temperature. Finally, a HPV-infected cervical cancer cell line, which was used as a real sample model, was treated using the optimized conditions and the presence of E7 proteins were analyzed by immuno-chromatography. The results of this experiment demonstrated that this rapid test could specifically detect HPV-infected samples.