• Title/Summary/Keyword: membrane orientation

Search Result 55, Processing Time 0.023 seconds

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

EFFECT OF AMINOACETONITRILE ON THE DEVELOPING RAT PERIODONTAL MEMBRANE (Aminoacetonitrile이 백서발육치근막에 미치는 영향에 관한 실험적 연구)

  • Kang, Min-Sun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 1978
  • It has been studied that aminoacetonitrile was associated with the inhibition of collagen fiber, argyrophilic fiber and oxytalan fiber synthesis. This experiment was performed, by the basic knowledge of above mentioned study, to study on the biological effect of aminoacetonitrile to the developing periodontal ligament in Sprague Dawley rat. twenty two of female rats weighing about 200gm were gestated. In 7 days after gestation, the experimental rats were injected aminoacetonitrile 7 times intraperitoneally. After parturition, delivered fJtuses were divided into 4 groups and each group was sacrificed to 1 day, 7 days, 14 days, and 21 days after delivery, schematically. All the fetuses were observed on their periodontal ligament by histological and histo chemical methods. To study on the components of periodontal ligament fiber in these experimental study van Gieson, Masson's trichrom, argyrophilic fiber, oxytalan fiber, methyl green pyronin and periodic acid-Shiff staining were performed. Results were as follows; 1) Retardation of functional orientation in periodontal ligament collagen fiber was observed in 1 day fetuses hut this appearance was diminished gradually and recovered in normal condition in 7 days fetuses. 2) Distribution of argyrophilic fiber in 1 day fetuses was oriented delicately and loosely but volume of this fiber was gradually thickened and distributed densely. 3) Oxytalan fiber was oriented dendritic ally and contradictorily in 14 days fetuses but their orientation was changed into oblique form in middle portion of roof and their numbers were increased gradually. 4) Pyronin-philic stain of fibroblast was gradually deepened in 7 days fetuses and this finding also suggested to the depreciation of collagen synthesis in this specimen. 5) PAS positive line was observed continuousely at the portion of cervical to the middle root surface.

  • PDF

Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins

  • Kwon, Soon-Kyeong;Jun, Sung-Hoon;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.633-641
    • /
    • 2020
  • Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the '3 omega motif.' This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B-C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these 'omega rhodopsins,' and speculated on their evolutionary origin of functional diversity.

Experimentally Provoked Double Axes Formation in Xenopus laevis Embryos (Xenopus Laevis Embryo에서 실험적으로 유도한 2중체축의 형성)

  • Chung, Hae-Moon;George M. Malacinski
    • The Korean Journal of Zoology
    • /
    • v.27 no.2
    • /
    • pp.93-102
    • /
    • 1984
  • Xenopus laevis eggs were de-jellied and manually manipulated to remove their vitelline membranes. They were then positioned in a variety of orientations re. gravity. That is the future ventral side was located upwards (opposed gravity) or downwards (faced gravity). Development through the tailbud stage was observed and the frequency of double axes formation recorded. Orientation of the egg re. its natural polarity was not an important factor in generating double axes. Its physical structure (flattened re. spherical), however, appeared to be important in determining the frequency of twinning. These observations give insights into the mechsnism of polarity establishment in anuran eggs, and provide methods which should be useful for studies on primary embryonic induction.

  • PDF

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

Syntheses and Potentiometric Properties of Polyethers Containing Thiazole and Oxazole Derivatives

  • 최준혁;고영국;권일전;김홍석;박현주;김상진;차근식;남학현
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.581-586
    • /
    • 1999
  • A series of polyethers containing the thiazole or oxazole subcyclic moiety have been synthesized. Reaction of 2-aryl-4-hydroxymethylthiazole with tetra- and pentaethylene glycol di-p-tosylate in THF provided corresponding α,ω-bis[2'-aryl-4'-methylthiazole]polyethylene glycol in good yields. Similar treatment of 2-phenyl-4-hydroxymethyloxazole 7 and 2-phenyl-5-hydroxymethyloxazole 8 with tetraethylene glycol di-p-tosylate yielded the corresponding 1,13-bis [2'-phenyl-4'-methyloxazole]tetraethylene glycol 16 and 1,13-bis[2'-phenyl-5'-methyloxazole]tetraethylene glycol 17 in 69 and 43% yields in respectively. The potentiometric properties of PVC-based ion selective membranes containing 66 wt% o-nitrophenyloctyl ether (NPOE) and 4 wt% polyethers 9-17 have been examined. The membranes containing thiazole and oxazole polyether derivatives exhibited high selectivity toward silver (I) ion. It was observed that the response slopes of the electrodes to silver ion vary with the length of polyether chain linking two thiazole subcyclic moiety. Potentiometric data suggest that the number of ether units, CH2OCH2, for phenylthiazole derivatives be greater than 5 to result in near-Nernstian response. However, the response behaviors of the membrane electrodes based on phenyloxazole podands 16 and 17, which have different orientation, were correspondingly similar to those of the electrodes based on phenylthiazole podands 9 and 10. On the other hand, the ISEs based on thiazole polyether derivatives with different terminal substituents, e.g., phenyl 10, naphtyl 14, and thienyl 15, except that with pyridyl 12, exhibited little difference in their potentiometric properties.

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Effects of Some Metabolic Inhibitors on Phototactic Movement in Cyanobacterium Synechosystis sp. PCC 6803 PTX (람세균 Synechocystis sp. PCC 6803 PTX의 주광성 운동에 미치는 몇가지 대사 억제제의 효과)

  • 박영총
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 1995
  • For understanding physiological nature of phototaxis in Synechocystis sp. PCC 6803 PTX(S. 6803 PTX), we examined the effects of some metabolic inhibitors and cation ionophore on the phototactic movement. In the presence of DCMU, which blocks the photosynthetic electron transport just after photosystem II acceptor, there was no inhibitory effect on the phototaxis up to $100\;\mu\textrm{M}$. Instead, the respiratory electron chain inhibitor such as sodium azide dramatically impaired the phototaxis in S. 6803 PTX. These observations indicate that the phototaxis is linked not to photo-phosphorylation, but to respiratory phosphorylation. When the cells were treated with un couplers such as CCCP or DNP, which dissipate the electrochemical gradient of proton($\Delta\mu_{H}+$) across the cytoplasmic membrane, these chemicals did not affect phototaxis. In contrast, when cells were treated with DCCD or NBD which deprive cells of A TP but leave $\Delta\mu_{H}+$ intact across the membrane, the phototactic movement was severly reduced. These results imply that ATP production, not proton motive force, is involved in the phototactic movement in this organism as a driving motive force. The application of specific calcium ionophore A23187 strongly impaired positive phototaxis. Calcium fluxes should be engaged in the sensory trans-duction of phototactic orientation. Finally, when ethionine was supplimented to culture media, the photomovement of this organism was inhibited. This implies that methylation/demethylation mechanism controls the process of phototaxis in S. 6803 PTX like chemotaxis in E. coli and Salmonella typhimurium.murium.

  • PDF

A Multi-scale Simulation Model of Circulation Combining Cardiovascular Hemodynamics with Cardiac Cell Mechanism (심근세포-심혈관계 혈류역학이 결합된 복합적 순환계 모델에 관한 연구)

  • Ko Hyung Jong;Leem Chae Hun;Shim Eun Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1164-1171
    • /
    • 2004
  • A new multi-scale simulation model is proposed to analyze heart mechanics. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. The ion transports across cell membrane initiated by action potential induce an excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to calculate the tension of cross bridge which is closely related to the ion dynamics in cytoplasm. To convert the tension on cell level into contraction force of cardiac muscle, we introduce a simple geometric model of ventricle with a thin-walled hemispheric shape. It is assumed that cardiac tissue is composed of a set of cardiac myocytes and its orientation on the hemispheric surface of ventricle remains constant everywhere in the domain. Application of Laplace law to the ventricle model enables us to determine the ventricular pressure that induces blood circulation in a body. A lumped parameter model with 7 compartments is utilized to describe the systemic circulation interacting with the cardiac cell mechanism via NL model and Laplace law. Numerical simulation shows that the ion transports in cell level eventually generate blood hemodynamics on system level via cross bridge dynamics and Laplace law. Computational results using the present multi-scale model are well compared with the existing ones. Especially it is shown that the typical characteristics of heart mechanics, such as pressure volume relation, stroke volume and ejection fraction, can be generated by the present multi-scale cardiovascular model, covering from cardiac cells to circulation system.