• 제목/요약/키워드: membrane module

검색결과 347건 처리시간 0.029초

페놀수지 생산공정에서 배출되는 반응성 폐수처리를 위한 중공사막 모듈 투과증발 공정모사 (Simulation of Pervaporation Process Through Hollow Fiber Module for Treatment of Reactive Waste Stream from a Phenolic Resin Manufacturing Process)

  • C. K Yeom;F. U. Baig
    • 멤브레인
    • /
    • 제13권4호
    • /
    • pp.257-267
    • /
    • 2003
  • 반응성 페놀수지 폐액을 처리하기 위해 중공사막 모듈을 이용한 투과증발 막 탈수공정을 연구하였다. 이 공정의 거동을 예측하기 위한 모사모델을 확립하였고 여기에 사용되는 중요 기본 파라메타들을 평판형 막을 사용하여 직접 구하여 사용함으로써 공정모사의 정확성을 얻을 수가 있었다. 이들을 모사치와 중공사 투과증발 막으로 부터 직접 측정한 각 투과특성들을 비교한 결과 서로 잘 일치함을 보여 본 모사모델의 타당성을 입증하였다. 사용된 중공사막은 중공사 안쪽에 활성층이 도포되어 있으며 공급액은 중공사 내부로 공급하였다. 공급액의 막내에서의 흐름속도에 따라 온도분포가 결정되며 이에 따라 막 투과특성이 달라짐을 모사결과로부터 얻을 수가 있었다. 공급액 온도증가는 막을 통한 탈수 투과 속도를 증가시킬 뿐 아니라 반응속도 증가로 인하여 물 생성속도도 증가시킴으로써 공급액 저장조 내의 수분 함량은 이들 상반된 공정들에 의해 결정이 됨을 보였다. 투과압력이 공급액 증기압보다 훨씬 작은 범위에서 증가할 경우 투과추진력인 공급액과 투과부의 투과물 활성도비 감소가 크지 않아 투과특성을 약간 저하시킨다. 그러나 투과압력이 공급액의 증기압에 접근할 경우 활성도비 감소가 현저하게 일어나 투과특성저하가 급격히 일어난다.

손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원 (Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing)

  • 윤원섭;임지원;조영주
    • 멤브레인
    • /
    • 제29권2호
    • /
    • pp.96-104
    • /
    • 2019
  • 본 연구는 분리막 성능 저하로 기능을 상실한 역삼투막의 힐링을 통한 복원의 가능성을 알아보고자 하는 데에 목적이 있다. 손상된 막은 양이온고분자인 poly(styrene sulfonic acid) sodium salt (PSSA)와 음이온고분자인 polyethyleneimine(PEI)를 염석법을 이용하여 이중으로 코팅했으며 또한 소재의 순서를 바꿔 코팅을 수행했다. 그리고 농도, 시간, 이온세기 등에 따라 코팅된 역삼투막의 투과도와 배제율을 측정하여 손상된 막으로부터 복원된 정도를 알아보았다. 또한 역삼투 평막에서 복원이 우수한 조건을 가정용 정수기 모듈에 적용하여 손상된 역삼투막 모듈에 또한 대하여 복원 가능성을 알아보았다. 이로부터 PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) 코팅 조건에서 역삼투막 모듈에 적용했을 때 염 배제율은 69%에서 86% (손상 전 모듈의 경우 90%)까지 복원되었다.

딥러닝을 이용한 정삼투 막모듈의 플럭스 예측 (Predicting flux of forward osmosis membrane module using deep learning)

  • 김재윤;전종민;김누리;김수한
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.93-100
    • /
    • 2021
  • Forward osmosis (FO) process is a chemical potential driven process, where highly concentrated draw solution (DS) is used to take water through semi-permeable membrane from feed solution (FS) with lower concentration. Recently, commercial FO membrane modules have been developed so that full-scale FO process can be applied to seawater desalination or water reuse. In order to design a real-scale FO plant, the performance prediction of FO membrane modules installed in the plant is essential. Especially, the flux prediction is the most important task because the amount of diluted draw solution and concentrate solution flowing out of FO modules can be expected from the flux. Through a previous study, a theoretical based FO module model to predict flux was developed. However it needs an intensive numerical calculation work and a fitting process to reflect a complex module geometry. The idea of this work is to introduce deep learning to predict flux of FO membrane modules using 116 experimental data set, which include six input variables (flow rate, pressure, and ion concentration of DS and FS) and one output variable (flux). The procedure of optimizing a deep learning model to minimize prediction error and overfitting problem was developed and tested. The optimized deep learning model (error of 3.87%) was found to predict flux better than the theoretical based FO module model (error of 10.13%) in the data set which were not used in machine learning.