• Title/Summary/Keyword: membrane material

Search Result 1,087, Processing Time 0.023 seconds

Hydration Properties of Cement Matrix using Electrolysis Alkaline Aqueous and Ground Granulated Blast Furnace Slag (전기분해 알칼리 수 및 고로슬래그 미분말 혼입 시멘트 경화체의 수화 특성)

  • Jung, Yoong-Hoon;Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 2021
  • Cement has been used as a main material in the modern construction industry. However, it has been pointed out as a main cause of global warming due to carbon dioxide generated during manufactured. Recently, research that replacing cement substitute to industrial by-products such as Blast Furnace Slag which is by-producted in steelworks. When Blast Furnace Slag is used as a cement substitute, it shows a problem of lower initial strength, which is caused by glassy membrane on the particle surface. In this study, we used Electrolysis Alkaline Aqueous to improve the usability and problem of lower initial strength. As a result of the experiment, cement matrix using Blast Furnace Slag and Alkaline Aqueous showed initial strength and hydrate product were developed than that using general mixing water. Also, as a result of porosity analysis, It was confirmed that cement matrix using Alkaline Aqueous and Blast Furnace Slag has a tighter structure in internal porosity and porosity distribution than using general mixing water.

Generation of a transgenic pig expressing human dipeptidylpeptidase-4 (DPP-4) (Human dipeptidylpeptidase-4(DPP-4) 발현 형질전환 돼지의 생산)

  • Chung, Hak Jae;Sa, Soo Jin;Baek, Sun Young;Cho, Eun Suek;Kim, Young Shin;Hong, Jun Ki;Cho, Kyu Ho;Kim, Ji Youn;Park, Mi Ryung;Kim, Kyung Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.306-314
    • /
    • 2019
  • As dipeptidyl peptidase-4(DPP-4) inhibitors are used widely as a secondary treatment for type 2 diabetes because they tend to be well tolerated with minimal side effects, the human DPP-4(hDPP-4) gene was injected into a pig zygote through micro-injection, and 1-cell stage fertilized embryos were then transplanted surgically into the oviduct. Three pigs were fertilized with hDPP-4 genes and produced sixteen piglets, in which one male piglet was identified to be transgenic. Finally, transgenic pigs showing hDPP-4 gene expression in the tail were produced. Western blot and RT-PCR analysis confirmed that the hDPP-4 is expressed strongly in the membrane cells of the transgenic pig, and that the hDPP-4 gene appears in various tissues and tails. This suggests that the expression vector is normally expressed in transgenic pigs. These results are anticipated to be a model animal to check the endocrine function for insulin resistance that occurs in a hDPP-4 transgenic pig and to increase its value for use as a material in newly developed medicines.

Adjunctive hyperbaric oxygen therapy for irradiated rat calvarial defects

  • An, Heesuk;Lee, Jung-Tae;Oh, Seo-Eun;Park, Kyeong-mee;Hu, Kyung-Seok;Kim, Sungtae;Chung, Moon-Kyu
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.2-13
    • /
    • 2019
  • Purpose: The aim of this study was to conduct a histologic evaluation of irradiated calvarial defects in rats 4 weeks after applying fibroblast growth factor-2 (FGF-2) with hyaluronan or biphasic calcium phosphate (BCP) block in the presence or absence of adjunctive hyperbaric oxygen (HBO) therapy. Methods: Twenty rats were divided into HBO and non-HBO (NHBO) groups, each of which was divided into FGF-2 and BCP-block subgroups according to the grafted material. Localized radiation with a single 12-Gy dose was applied to the calvaria of rats to simulate radiotherapy. Four weeks after applying this radiation, 2 symmetrical circular defects with a diameter of 6 mm were created in the parietal bones of each animal. The right-side defect was filled with the materials mentioned above and the left-side defect was not filled (as a control). All defects were covered with a resorbable barrier membrane. During 4 weeks of healing, 1 hour of HBO therapy was applied to the rats in the HBO groups 5 times a week. The rats were then killed, and the calvarial specimens were harvested for radiographic and histologic analyses. Results: New bone formation was greatest in the FGF-2 subgroup, and improvement was not found in the BCP subgroup. HBO seemed to have a minimal effect on new bone formation. There was tendency for more angiogenesis in the HBO groups than the NHBO groups, but the group with HBO and FGF-2 did not show significantly better outcomes than the HBO-only group or the NHBO group with FGF-2. Conclusions: HBO exerted beneficial effects on angiogenesis in calvarial defects of irradiated rats over a 4-week healing period, but it appeared to have minimal effects on bone regeneration. FGF-2 seemed to enhance new bone formation and angiogenesis, but its efficacy appeared to be reduced when HBO was applied.

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells (초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매)

  • Hyeonwoo Choi;Keonwoo Ko;Yoonseong Choi;Jiho Min;Yunjin Kim;Sourabh Sunil Chougule;Khikmatulla Davletbaev;Chavan Abhishek Arjun;Beomjun Pak;Namgee Jung
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.208-214
    • /
    • 2024
  • To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

3-Dimensional Micro-Computed Tomography Study on Bone Regeneration with Silk Fibroin, rh-Bone Morphogenetic Protein Loaded-Silk Fibroin and Tricalcium Phosphate Coated-Silk Fibroin in Rat Calvaria Defect

  • Pang, Eun-O;Park, Young-Ju;Park, Su-Hyun;Kang, Eung-Sun;Kweon, Hae-Yong;Kim, Soeng-Gon;Ko, Chang-Yong;Kim, Han-Sung;Nam, Jeong-Hun;Ahn, Jang-Hun;Chun, Ji-Hyun;Lee, Byeong-Min
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the bone regeneration capacity of silk fibroin (SF) when combined with beta tricalcium phosphate (${\beta}$-tricalcium phosphate [TCP]) and rh-bone morphogenetic protein (BMP) in vivo by micro-computed tomography (CT), soft x-ray, and histological analysis. Methods: A total of 56 critical size defects formed by a trephine bur made on 28 adult female Spague-Dawley rats were used for this study and the defect size was 5.0 mm in diameter. The defects were transplanted with (1) no graft material (raw defect), (2) autogenous bone, (3) SF ($10{\mu}g$), (4) SF-BMP ($10{\mu}g$, $0.8{\mu}g$ each), and (5) SF+${\beta}$-TCP ($10{\mu}g$). At 4 and 8 weeks after operation, the experimental animals were sacrificed. Samples were evaluated with soft x-ray, histological examinations and 3-dimensional micro-CT analysis. Results: In the 3-dimensional micro-CT evaluation, bone volume and bone surface data were higher in the SF-BMP ($12.8{\pm}1.5$, $138.6{\pm}45.0$ each) (P<0.05) and SF-TCP ($12.3{\pm}1.5$, $144.9{\pm}30.9$ each) group than in the SF group ($6.1{\pm}3.3$, $77.2{\pm}37.3$ each) (P<0.05), except for the autogenous group ($15.0{\pm}3.0$, $190.7{\pm}41.4$ each) at 4 weeks. At 8 weeks, SF-BMP ($16.8{\pm}3.5$, $173.9{\pm}34.2$ each) still revealed higher (P<0.05) bone volum and surface, but SF-TCP ($11.3{\pm}1.5$, $1132.9{\pm}52.1$ each) (P=0.5, P=0.2) revealed the same or lower amount compared with the SF group ($13.8{\pm}2.7$, $127.5{\pm}44.8$ each). The % of bone area determined by radiodensity was higher in the SF-TCP ($31.4{\pm}9.1%$) and SF-BMP ($36.2{\pm}16.2%$) groups than in the SF ($19.0{\pm}10.4$) group at the period of 4 weeks. Also, in the histological evaluation, the SF-BMP group revealed lower inflammation reaction, lower foreign body reaction and higher bone healing than the SF group at postoperative 4 weeks and 8 weeks. The SF-TCP group revealed lower inflammation at 4 weeks, but accordingly, as the TCP membrane was absorbed, inflammatory and foreign body reaction are increased at 8 weeks. Conclusion: The current study provides evidence that the silk fibrin can be used as an effective grafted material for tissue engineering bone generation through a combination of growth factor or surface treatment.

Physicochemical Characteristics and Skin Absorption of Transfersomes Containing Centella asiatica Extract According to Edge Activators (Edge Activator 에 따른 병풀추출물 함유 트렌스퍼좀의 물리화학적 특성과 피부흡수)

  • Eun-hee Lee;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.147-157
    • /
    • 2023
  • Centella asiatica extract is widely used as a raw material for cosmetics due to its various effects, but it is difficult to expect penetration into the skin due to its high molecular weight and low solubility. In order to solve these problems, lipid-based liposomes of various types were developed to increase skin absorption. Therefore, in this study, we tried to increase the skin absorption rate by preparing transfersomes using surfactants as edge activators in existing liposomes. Liposome and transfersomes containing Span 80 and Tween 20, 60, 80, and 85, respectively, were prepared using a high-pressure homogenizer, and we evaluated the particle size, polydispersity index, zeta potential, and skin absorption rate. As a result, there was almost no change in the physical properties of particle size, polydispersity index and zeta potential from 25 ℃ to 60 d, and the particle size of transfersomes containing Tween 20, 60, and 80 increased after 60 d at 45 ℃. Madecassoside, main substances of the Centella asiatica extract was used as an standard and madecassoside was measured and calculated when measuring the skin absorption rate using Franz diffusion cells. As a result, formulations containing Tween 20 were the most, whereas formulations containing Span 80 were the least. According to the skin absorption coefficient (Kp) value, all formulations showed 'very fast', and the absorption rate was similar or greater than that of liposomes, except for formulations containing Span 80. Through this, it was confirmed that the larger the HLB value of the nonionic surfactant, the smaller the particle size of the transfersome, and the increased skin absorption rate due to the increased flexibility of the vesicle membrane. Through this study, transfersome using surfactant as an edge activator can be expected to solve local skin problems not only as a cosmetic raw material or product, but also by increasing skin absorption.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.