• Title/Summary/Keyword: membrane distillation

Search Result 123, Processing Time 0.024 seconds

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation (투과증발에 의한 Ester 성분의 소수성막의 투과플럭스)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.197-204
    • /
    • 2016
  • The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas (국내 및 해외의 해수담수화 기술 비교분석)

  • Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.255-268
    • /
    • 2016
  • Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient (압력구배의 주기적 변화에 따른 한외여과 Flux의 변화)

  • 서창우;이은규
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1999
  • To improve the crossflow untrafiltration flux, we applied periodic oscillations in transmembrane pressure gradient in order to promote fluid turbulence by inducing repeated compression and relaxation of the cake/gel layer. The oscillatory forms used were square-, sine-, triangle-wave, and pumping interruption. The permeate flux profiles were mathematically simulated and compared with the experimental data. The result showed the periodic pumping interruption most effectively improved the overall flux by up to about 32%. Enough pumping off-time, at least on the order of tens of seconds, was needed to allow the solutes in the layer to diffuse back to the bulk phase. It was better to start the oscillations earlier before the layer was fully established. The square-wave oscillation yielded about 11% increase, which was particularly pronounced in the later part of the filtration. Either the amplitude or the period of the oscillations resulted little influence on flux.actate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020 (계량서지적 분석을 활용한 핵심 담수화 기술의 연구 동향)

  • Lee, Gyeonghun;Kim, Hye-Won;Boo, Chanhee;Beak, Youngbin;Kwak, Rhokyun;Kim, Choonsoo;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2021
  • The global water shortage is getting more attention by global climate change. And water demand rapidly increases due to industrialization and population growth. Desalination technology is being expected as an alternative water supply method. Desalination technology requires low energy or maintenance costs, making it a competible next generation technology, with examples such as forward osmosis (FO), membrane distillation (MD), capacitive deionization (CDI), and electrodialysis (ED) to compete with reverse osmosis (RO). In order to identify recent research trends in desalination technologies (FO, MD, RO, CDI, and ED) between 2000-2020, a bibliometric analysis was conducted in the current study. The number of published papers in desalination technology have increased in Desalination and Journal of Membrane Science mainly. Moreover, it was found that FO, MD, RO, CDI, and ED technologies have been applied in various research areas including electrochemical, food processing and carbon-based material synthesis. Recent research topics according to the desalination technologies were also identified.

Production of High Hardness Concentrated Seawater Using NF Membrane (나노여과막을 활용한 고경도 농축수 제조)

  • Ji, Ho;Moon, Deok Soo;Choi, Mi Yeon;Kim, Kwang Soo;Lee, Ho Saeng;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.333-337
    • /
    • 2014
  • The purpose of this study is to develop a process technology to produce high hardness concentrated seawater removing chloride ions but containing useful minerals such as magnesium and calcium in the seawater desalination process. In order to make high hardness concentrated seawater, evaporation system is mostly used recently. Because evaporation system requires a large amount of energy consumption, in this study, it was aimed to produce high hardness concentrated seawater using membrane filtration requiring less energy. Nano filtration membranes were used for the experiments, and different types of high hardness concentrated seawater was produced depending on the membranes' specification, the number of times being concentrated, and pressure. As a result, at between 15bar and 20 bar in pressure, in between the second and the third times of concentration, the experiment result showed the best economic efficiency. By the experiment, production of high hardness concentrated seawater seemed to have a good economic feasibility.

Current Status and Perspectives of Shale Gas Water Treatment Technology (셰일가스 수처리 기술 동향 및 전망)

  • Koo, Jae-Wuk;Lee, Sangho;Hong, Seungkwan;Kim, Joon Ha
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Shale gas has the potential to significantly change the way of the world's energy use. However, there are increasing concerns on environmental problems, particularly with respect to water use and wastewater treatment. This paper highlights issues related to shale gas water management and technologies currently used to address them. It also presents perspectives of emerging technologies for the treatment of shale gas wastewater, including forward osmosis (FO) and membrane distillation (MD).

A study on the required energy of a thermal type desalination plant (증발식 해수담수화설비의 에너지 소모량에 관한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1094-1100
    • /
    • 2014
  • TEvaporator is key component in food, seawater distillation and waste water treatment system, which is basically to concentrate the raw liquid by evaporating the pure water under vacuum condition. The liquid concentration is performed through the membrane, electro-dialysis and evaporation. In this study, only the evaporating type was treated for evaluating the economic analysis with the various operating conditions. The results of this study showed that the performance of the OT-MSF desalination system is increased with decreasing the temperature difference between the neighboring evaporators, which means that the number of evaporators is increased, under the determined design conditions.

How to Eliminate CO, CO2 and CH4 in H2 & Inert Gas -Possibility of Fuel Cell Application- (수소와 불활성 가스 중 일산화탄소, 이산화탄소, 메탄 제거에 관한 연구 -연료전지에의 적용 가능성-)

  • Lee, Taek-Hong;Cheon, Young-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The purpose of this paper is, based on the theoretical background of the principle of gas purification and absorption, and the absorbing ability of metals, to syudy the efficiency of gas purification of inorganic gases using Zr alloys, so as to contribute to the IT industry. To produce and distribute gas with high purity and ultra-high purity, different types of gas purifier are currently being used: distillation type, getter type, catalyst type, absorption at low-temperature type, and membrane separation equipment. From the different purification methods mentioned above, the getter type gas purifier is capable of not only high performance and capacity but also P.O.U(Point Of Use) method. The key of the getter type gas purifier is its efficiency of gas purification, which is the subject chosen for this study.

The Development of Iodine-123 with MC-50 Cyclotron (MC-50 싸이클로트론을 이용한 $^{123}I$ 제법 연구)

  • Suh, Yong-Sup;Yang, Seung-Tae;Chun, Kown-Soo;Lee, Jong-Doo;Han, Hyon-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.2
    • /
    • pp.286-293
    • /
    • 1991
  • $^{123}I$, which is applied for the thyroid and other in vivo kinetic study, has a special role in life sciences. The 159 KeV $\gamma-ray$ from $^{123}I$ is almost ideally appropriate for the current imaging instrumentation. Its decay mode (electron capture) and short half-life (13.3 hr) reduced the burden of radiation dose to the patients, and its chemical property makes it easy to synthesize the labelling compounds. In this experiment, the production of $^{123}I$ via the nuclear reaction $^{124}Te(p,2n)^{123}I$ with 28 MeV protons was sutdied. $TeO_2$ is used as a target material, because it has good physical properties. The target was prepared with $TeO_2$ powder and was molten into a ellipsoidal cavity (a=14 mm, b=10 mm, $270.8mg/cm^2$ thick) of pure platinum. The irradiation was carried out in the external proton beam with incident energies range from 28 MeV to 22 MeV, and current was $30{\mu}A$. The loss of $TeO_2$ target was significantly reduced by using $4\pi-cooling$ system in irradiation. The dry distillation method was adopted for the separation of $^{123}I$ from irradiated target, and when it was kept 5 minutes at $780^{\circ}C$, its result was quantitative. The loss of the target material $(TeO_2)$ was below 0.2% for each production run and $^{123}I$ from the dry distillation apparatus was captured with 0.01 N NaOH in $Na^{123}I$ form, then the pH of the solution was adjusted to $7.5\sim9.0$ with HC1/NaOH. The $Na^{123}I$ solution was passed through $0.2{\mu}m$ membrane filter, and sterilized under high pressure and temperature for 30 minutes. The production of $^{123}I$ is acceptable for clinical application based on the quality of USP XXI.

  • PDF