• Title/Summary/Keyword: membrane degradation

Search Result 393, Processing Time 0.022 seconds

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

Concentration of Pigment Extracted from Purple Sweet Potato by Nanofiltration (막분리에 의한 자색고구마 색소의 농축)

  • Kim, Seon-Jae;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.492-496
    • /
    • 1997
  • Purple sweet potato pigment extract was concentrated using both membrane separation method and vacuum concentration method. The pigment extract (anthocyanin content 1.6 g/L) was concentrated $({\times}25)$ after 5 hr of continuous operation of a nanofiltration to get anthocyanin content of 10.6 g/L. Total solid content also increased continuously while the flux decreased continuously during the concentration process. Degradation index (DI) changes of concentrated pigment solution were insignificant during the whole concentration process which is indicating that the nanofiltration method does not affect color degradation of anthocyanin pigment. For the comparison test, the same pigment extract was concentrated using a rotary vacuum evaporator at temperatures of 40 and $60^{\circ}C$. At both temperatures, pigment content increased in a similar manner during concentration $({\times}5)$. However, DI value at $60^{\circ}C$ increased while that at $40^{\circ}C$ did not change appreciably. Total color difference value changed only slightly by nanofiltration and $40^{\circ}C$ while changed significantly by $60^{\circ}C$. These indicate that a membrane filtration method is more effective in concentrating purple sweet potato pigment extract than a vacuum concentration method by high temperature.

  • PDF

Time-Dependent Modeling of Performance Degradation for PEMFC Single Cell System to Evaluate the Cell Performance and Durability: Effects of CO Poisoning (고분자전해질 연료전지의 성능과 안정성 시험을 위한 단위전지의 시간 경과에 따른 모델링: 일산화탄소 피독현상에 의한 효과)

  • Kim, Jong-Sik;Kim, Pil;Joo, Ji-Bong;Kim, Woo-Young;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • There have been great attentions on polymer electrolyte membrane fuel cell (PEMFC) due to their advantageous characteristics such as zero emission of hazardous pollutant and high energy density. In this work, we evaluated degradation phenomena and stability of single cell performance via one dimensional single cell modeling. Here, CO poisoning on anode on anode was considered for cell performance degradation. Modeling results showed that the performance and stability were highly degraded with CO concentration in fuel gas. In addition, cell performance was reduced by slow oxygen reduction on cathode in long term operation. In order to overcome, it is required to increase ratio o#hydrogen in the fuel gas of anode and high Pt loading contained in the cathodic catalyst layer.

  • PDF

Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향)

  • Donggeun Yoo;Sohyeong Oh;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.58-61
    • /
    • 2023
  • The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.

Gas Transport Properties of Crosslinked Polyimide Membranes Induced by Aliphatic Diamines with Different Chain Length (사슬 길이가 다른 지방족 디아민으로 가교된 폴리이미드 분리막의 기체 투과 특성)

  • Lee, Hye Rim;Lee, Jung Moo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.450-459
    • /
    • 2013
  • 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) based polyimide (PI) were crosslinked with 1,2-Diaminoethane (DAE) and 1,6-Diaminohexane (DAH) to enhance gas transport properties. Fourier transform infrared (FT-IR) studies show that imide groups were converted into amide groups during crosslinking process. Thermogravimetric analysis (TGA) results indicate that the degradation temperature of crosslinked PI membranes decreased after crosslinking. This is due to degradation of alkyl group in crosslinking agent. The d-space of crosslinked PI membranes decreased with increasing crosslinking time. The ideal permeability for $CH_4$, $N_2$, $O_2$, and $CO_2$ decreased after crosslinking and the ideal permeability of crosslinked PI membranes induced by DAH is larger than that by DAE. In contrast, the permselectivity of $CO_2/CH_4$, $CO_2/N_2$ and $O_2/N_2$ increased during crosslinking. For the gas pair of $CO_2/CH_4$, the maximum increment is about 39.5% after 6 minutes of DAE crosslinking. Also, that of $O_2/N_2$ gas pair is about 20.5% after 6 minutes of DAE crosslinking. According to these result, DAE is more suitable for enhanced permselectivity than DAH. On the contrary, DAE is not useful for $CO_2/N_2$ separation due to reduction in $CO_2/N_2$ permselectivity after 3 minutes DAE crosslinking.

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS (OBIGGS용 공중합체 폴리이미드를 이용한 기체분리막의 투과 특성평가)

  • Lee, Jung Moo;Lee, Myung Gun;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.325-331
    • /
    • 2014
  • We synthesized novel polyimides with high gas permeability and selectivity for application of on board inert gas generation system (OBIGGS). 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) was used to improve gas permeability and various kinds of diamines were used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method and their average molecular weights were over 100,000g/mol. The glass temperature ($T_g$) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high $T_g$ over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 36.21 barrer with high $O_2/N_2$ selectivity around 4.1. From this result, we confirm that these membranes have possibility to apply to OBIGGS.

Oxidation of Organic Compounds through the Electrochemical Reaction Using $TiO_{2}$ Photocatalytic Membranes ($TiO_{2}$ 광촉매 막의 전기화학 반응에 의한 유기물의 산화)

  • 현상훈;이기홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.101-108
    • /
    • 1996
  • The oxidation/degradation efficiency of formic acid through the photoelectrochemical reaction has been investigated as a basic research in order to develope the process for degrading toxic organic compounds dissolved in water. A $TiO_{2}$ photoelectro-membrane reactor for purification of water, in which filtration as well as photoelectrocatalytic oxidation of organic compounds could be carried out simultaneously, was developed. Porous $SnO_{2}$ tubes prepared by slip casting and commercial porous stainless steel tubes, being electrically conductive, were used as not only supports but also working electrodes. The UV light with the wavelength of 365 nm was applied as a light source for photocatalytic reactions. The photoelectrocatatytic composite membranes were prepared by coating the support surface with the $TiO_{2}$ sol of pH 1.45. The oxidation efficiency of formic acid increased with the reaction time and the applied voltage, but was almost independent of the solution flux. The results showed that more than 90% of formic acid could he dograded at 27V using the $TiO_{2}$/stainless steel composite membrane, while about 77% in case of the $TiO_{2}/SnO_{2}$ Composite membrane. It was also concluded that the oxidation efficiencies of formic acid could be significantly improved by about 6~7 times by the photoelectrochemical reaction in comparison with those by the photocatalytic reaction only.

  • PDF

Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects

  • Song, Woong-Kyu;Kang, Joo-Hyun;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Kim, Byung-Hoon;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.5
    • /
    • pp.305-316
    • /
    • 2018
  • Purpose: The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods: Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results: In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups ($1.82{\pm}0.86mm^2$ and $2.60{\pm}0.65mm^2$, respectively). Conclusions: The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.

Preparation and Properties of Aminated Poly(ethersulfone) Ion-Exchange Membrane by UV Irradiation Method (UV 조사에 의한 아민화 Poly(ethersulfone) 이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Hwan, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • The PES-g-BTCA membrane was synthesized by UV irradiation method and then used to be modified into the PES anion exchange membrane by the amination reaction. Their chemical structures and adsorption properties were investigated. The degree of grafting and amination were increased with increasing the reaction time and had the maximum values of 138% and 1.20 mmol/g at 80 min, respectively. The initial thermal degradation temperature of PES membrane was $400^{\circ}C$. Which was reduced as the surface modification reaction had proceeded. The values of contact angle for PES membrane were decreased from 68.1 to $40.2^{\circ}$ with increasing the extent of amination, the water up-take and ion exchange capacity were also increased with increasing UV irradiation time until 80 min. The average pore size and BET surface area were decreased in order of PES, PES-g-BTCA, and aminated PES ion exchange membrane. Their average pore sizes were 624.8, 359.7, and 138.5 ${\AA}$, and their surface areas were 10.1,9.7 and 1.7 $m^2/g$, respectively.

Biological effects of a porcine-derived collagen membrane on intrabony defects

  • Lee, Chang-Kyun;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young;Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Jue-Yeon
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.232-238
    • /
    • 2010
  • Purpose: To prolong the degradation time of collagen membranes, various cross-linking techniques have been developed. For cross-linking, chemicals such as formaldehyde and glutaraldehyde are added to collagen membranes, but these chemicals could adversely affect surrounding tissues. The aim of this study is to evaluate the ability of porous non-chemical cross-linking porcine-derived collagen nanofibrous membrane to enhance bone and associated tissue regeneration in one-wall intrabony defects in beagle dogs. Methods: The second and third mandibular premolars and the first molars of 2 adult beagles were extracted bilaterally and the extraction sites were allowed to heal for 10 weeks. One-wall intrabony defects were prepared bilaterally on the mesial and distal side of the fourth mandibular premolars. Among eight defects, four defects were not covered with membrane as controls and the other four defects were covered with membrane as the experimental group. The animals were sacrificed 10 weeks after surgery. Results: Wound healing was generally uneventful. For all parameters evaluating bone regeneration, the experimental group showed significantly superior results compared to the control. In new bone height (NBh), the experimental group exhibited a greater mean value than the control ($3.04{\pm}0.23\;mm/1.57{\pm}0.59$, P=0.003). Also, in new bone area (NBa) and new bone volume (NBv), the experimental group showed superior results compared to the control (NBa, $34.48{\pm}10.21%$ vs. $5.09{\pm}5.76%$, P=0.014; and NBv, $28.04{\pm}12.96$ vs. $1.55{\pm}0.57$, P=0.041). On the other hand, for parameters evaluating periodontal tissue regeneration, including junctional epithelium migration and new cementum height, there were no statistically significant differences between two groups. Conclusions: Within the limitations of this study, this collagen membrane enhanced bone regeneration at one-wall intrabony defects. On the other hand, no influence of this membrane on periodontal tissue regeneration could be ascertained in this study.