• Title/Summary/Keyword: membrane curing

Search Result 25, Processing Time 0.028 seconds

Influence of Membrane Forming Compounds for Concrete on Water Retention Properties of Concrete Mortar (콘크리트용 피막 양생제가 시멘트 모르타르의 보습특성에 미치는 영향)

  • Lee, Gun-Cheol;Noh, Sang-Kyun;Cho, Byoung-Young;Kim, Young-Geun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.117-120
    • /
    • 2009
  • It has been gradually increased with the use of resin based membrane forming agent for curing method, which plays a role in protecting moisture evaporation by forming resin membrane at the surface of concrete. In this paper, tests were carried out to examine moisture retention capability of cement mortar applying membrane forming agent. Dosages and types of the membrane forming agent were varied. It is found that sheet curing sealed with the surface of concrete closely has favorable moisture retention capability. However, the application of membrane forming curing method had superiority in moisture retention capability at early stage but at later age, its capability is deteriorated. Hence, further study regarding altering application method was necessary to secure enhanced moisture retention capability.

  • PDF

Permeation Properties of Surface Modified Nanofiltration Membrane (표면 개질된 나노복합막의 투과 특성)

  • Tak Tae-Moon;Park Hyung-Kiu;Jang Gyung-Gug
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.207-217
    • /
    • 2004
  • In this study, we prepared nanofiltration membrane by applying the interfacial polymerization method as a way of manufacturing composite membranes. We have examined the effects of various preparation factors such as monomer concentration and composition, thermal curing condition, post treatment condition. In addition to preparation conditions, we also monitored the effects of operation conditions such as feed solution concentration and operation pressure on the permeation properties of the resulting nanofiltration membrane. We intended to increase the permeation rate of nanofiltration membrane by the enlargement of effective surface area using additives during interfacial polymerization step. With increasing the monomer concentration, membrane permeation rate are decreased with maintaining almost constant rejection. With respect to curing condition, with increasing the curing temperature both permeation rate and rejection are decreased. With increasing the ratio of MPD in amino monomer composition, permeation rate decreased drastically with high rejection. With increasing the feed solution concentration, both permeation rate and rejection decreased. Both permeation rates and rejection increased with increasing the operating pressure. Nanofiltration membrane have higher surface roughness with increasing additive concentration in the case of using MPD contained amine composition than using piperazine alone. Permeation rates are much lower than the nanofiltration membrane prepared by piperazine.

The Effects of the Dehumidifying Membrane Dryer for the Curing Processes of Waterborne Adhesives (수용성 접착제 경화 공정용 제습 막 건조기 시스템의 효과)

  • Yu, Seoyoon;Lim, Choong-Sun;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • The curing processes of waterborne adhesives are in general undergone by using hot-air dryer. The hot-air dryer curing the adhesives with heat has a disadvantage of requiring high temperature over $100^{\circ}C$ as well as curing time as long as 20 min. When it comes to the heat control, high temperature open disturbs the adhesion of substrates by extremely lowering the viscosity of the adhesives. Furthermore, the humidity resulting from the drying process makes the curing condition irregularly. In this report, dehumidifying membrane dryer was used in order to keep the curing process same by removing humidity caused by the evaporation of water during the drying process, and to shorten the curing time. Here, we compared the peel strength of attached substrates in the dehumidifying membrane dryer to find out appropriate curing condition and confirm the effects of the dehumidifying membrane.

Adhesive Strength Characteristics of the Curing Time and Test Temperature for Liquid Waterproofing Membrane in Concrete Bridge Deck (콘크리트 교면 도막 방수재의 양생기간 및 시험체 온도에 따른 접착 특성)

  • 조병영;박동협;신주재;김영근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.553-556
    • /
    • 2003
  • This study is analyzed about the factor of adhesive strength characteristics, curing time, asphalt application, test temperature which are liquid waterproofing membrane of rubber-asphalt and chloroprene-rubber type for concrete bridge deck. According to the results, curing time is shorter, adhesive strength is less in chloroprene-rubber type. And also chloroprene-rubber and rubber-asphalt type are showed high adhesive strength in low temperature.

  • PDF

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

SOLUTION CHARACTERISTICS AND MEMBRANE FORMATION OF PARTIALLY IMIDIZED POLY (AMIC ACID)

  • Lee, Hyuck-Jai;Won, Jong-Ok;Park, Hyun-Chae;Lee, Hoo-Sung;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.83-86
    • /
    • 1999
  • The imidization effect of a poly (amic acid) dope solution on membrane formation has been investigated. Poly (amic acid) solution in S-methyl-2-pyrrolidione hs been thermally imidized at $120^{\circ}C$ with different curing time and its degree of imidization was determined by infrared spectroscopy. The solution properties have been studied as a function of concentration and curing time by dynamic light scattering. The quality of a solvent was changed from good to poor with increasing imidization of poly(amic acid).The reduced polymer-solvent interaction diminishes the membrane formation time. The morphology of a membrane was able to be controlled by the characteristics of dope solution.

  • PDF

Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes (우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Miyauchi, Kaori;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF

A Study on the Preparation of Thin-Film Composite Membrane with Polyethersulfone Supporting Membrane (역삼투 복합막 제조(II) 폴리에테르설폰막의 제조와 복합막 제조에 관한 연구)

  • 이동진;민병렬;이병철;송희열
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The performane of prepared Thin-Film Composite membrane depends on supporting membrane, concentration of monomers, dipping time of supporting membrane into monomer solution, reachon time between monomers, curing temperature and time and posttreatment. This study was conducted for searching the optimal condition for making the composite membrane. For this purpose, supporting membrane and composite membrane was made under various condition and at each step were tested.

  • PDF

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.

Assessing the Dehydration Pervaporation Performance for Purification of Industrially Significant 1, 2 Hexanediol/Water Mixtures Using Crosslinked PVA Membrane (가교된 PVA 분리막을 이용한 1, 2 hexanediol/water 혼합물의 투과증발 탈수 특성 연구)

  • Shivshankar Chaudhari;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.369-376
    • /
    • 2023
  • In this study, the alternative to the energy-intensive conventional vacuum distillation process, an eco-friendly and energy-efficient pervaporation separation was employed in 1,2 hexane diol/water (HDO/water) mixture. The crosslinked PVA-glutaraldehyde was coated inside the alumina hollow fiber membrane (Al-HF). In the HDO/IPA pervaporation separation, optimization of the membrane concerning PVA/GA ratio, curing temperature, and pervaporation operating condition were performed. In the long-term stability test, the sustainable pervaporation separation performance giving flux in the range of 1.90~2.16 kg/m2h, and water content in permeate was higher than 99.5% (separation factor = 68) was obtained from the PVA/GA (molar ratio = 0.08, curing temperature = 80℃) coated Al-HF membrane from HDO/water (25/75, w/w, %) mixture at 40℃. Therefore, this work provides potential and inspiration for PVA-based membranes to mitigate excessive energy requirements in HDO/water separation by pervaporation.