• 제목/요약/키워드: membrane bioreactor

검색결과 236건 처리시간 0.02초

빗물과 하수를 연계활용하는 Hybrid-MBR을 사용한 중수 이용의 수질안정성 (Water Stability of Reuse Water by using Hybrid-MBR)

  • 이태섭;이상엽;홍승관
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.101.1-101.1
    • /
    • 2010
  • 빗물과 생활하수를 이용하여 재이용수로 활용하는 방법은 각각 연구가 되어 있다. 하지만 그 두가지를 합쳐서 사용하는 연구는 현재까지 미흡하며, 본 연구에서 사용된 기술(Hybrid-MBR, 이하 HMBR)을 활용해서 중수 수질기준에 맞도록 Blending하는 실험을 하였다. 고도처리를 할 경우 운전이나 장치상의 문제로 수질오염이 생길 수 있는 것을 본 실험해서 사용한 blending을 이용하여 수질 오염을 방재할 수 있다.

  • PDF

2단계 고정화 효소반응기를 활용한 Cyclodextrin의 연속생산 (Continuous Production of Cyclodextrin in Two-Stage Immobilized Enzyme Reactor Coupled with Ultrafiltration Recycle System)

  • 이용현;이상호;한일근
    • 한국미생물·생명공학회지
    • /
    • 제19권2호
    • /
    • pp.171-178
    • /
    • 1991
  • The two-stage enzyme reactor, packed with cyclodextrin glucanotransferase (CGTase) immobilized on Amberite IRA 900, coupled with ultrafiltration membrane was investigated for continuous production of cyclodextrin (CD). 5% (w/v) of soluble starch was partially cyclized, in the 0.1 l first-stage immobilized enzyme reactor, up to CD conversion yield of 10% (w/w) at retention time of 0.56hr and 1.5 units of immobilized CGTase/1g of carrier. In the second stage main immobilized enzyme reactor capacity of 1.5 l, the maximum CD conversion yield of 39% (w/v) was achieved at retention time of 2.8hr and 0.47 unit of CGTase/1 g of carrier. Unreacted residual dextrin was fractionated with ultrafiltration membrane, and then, recycled into the second-stage main bioreactor to increase the CD conversion yield. The most suitable membrane size and the volume concentration ratio (concentrate: filterate) for recycling of unreacted residual dextrin were found to be 5K dalton and 4:6, respectively. CD conversion yield was increased about 3~4% upon co-immobilization of pulluanase along with CGTase. Spent Amberite IRA 900 can be reutilized consecutively more than 3 times for immobilization of CGTase after regeneration.

  • PDF

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

중공사 정밀여과 MBR공정을 이용한 제직폐수의 재이용 (Reuse of Weaving Wastewater by Membrane Bioreactor Equipped with a Hollow-fiber MF Membrane)

  • 정용준;배종홍;민경석
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.365-369
    • /
    • 2004
  • Submerged membrane bio-reactor equipped with a hollow fiber microfiltration was applied to reuse weaving wastewater of water jet loom, where two parameters such as the concentration of MLSS and the flux were controlled. While the flux at the concentration of MLSS around 900mg/L was constantly kept over 0.4m/d and 0.8m/d in a short time, the stable flux at around 300mg/L of MLSS was shown at the 8 days later. Regardless of MLSS and flux, BOD, CODcr and Turbidity of the permeate were 1~2mg/L, 7~10mg/L and below 1 NTU, which were 85~90%, 87~90% and 98% of removal efficiency, respectively. The stable operation without fouling was achieved because the contents of ECP were smaller than those of common MBR processes and the composition(saccharide/protein) was kept constantly. In this study, 0.5~1.0m/d of flux and 400~900mg/L of MLSS were considered as the most recommendable operating condition for the reuse of weaving wastewater.

활성슬러지 케이크의 분리막 오염 모델 (Membrane Fouling Models for Activated Sludge Cakes)

  • 김대천;정건용
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.249-257
    • /
    • 2014
  • 본 실험은 실험실적 규모의 침지식 평막형 분리막이 장착된 활성슬러지 생물반응기에 인공폐수를 사용하여 수행하였다. 분리막 운전은 MLSS 5,000 mg/L 활성슬러지 용액을 일정 유량으로 계속 투과시키는 방식과 주기적으로 10분여과/2분휴지 방식으로 구분하여 실시하였다. 산기량은 0.25 L/min로 일정하게 유지한 상태에서 투과유속을 10에서 $25L/m^2{\cdot}hr$까지 증가시키면서 막간차압을 측정하였다. 또한 분리막 오염 상태를 판단하기 위하여 완전막힘, 표준막힘, 중간막힘, 비압축성 케이크 및 선형압축성 케이크 오염 모델을 실험값에 적용하였다. 10분운전/2분휴지 운전방식에서는 매 주기마다 펄스형태로 막간차압이 변화하므로 최고점 및 최저점 연결선으로 구분하여 막오염 모델을 적용하였다. 활성슬러지 케이크 막오염은 이상의 5가지 오염 모델 중 선형압축성 케이크 오염 모델이 모든 투과실험 결과와 가장 잘 일치하였다.

PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가 (Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting)

  • 이태섭;김영진;함상우;홍승관;박병주;신용일;정인식
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

형광입자를 이용한 분리막 표면 검측 방법의 파일럿 규모 플랜트 적용 (Application of fluorescent particles as a tracer to detect the membrane surface damage in a pilot scale membrane bioreactor)

  • 김초아;김희준;조진우
    • 상하수도학회지
    • /
    • 제30권1호
    • /
    • pp.33-40
    • /
    • 2016
  • In this study, a fluorescent silica nano particle is used as the surrogate for challenging test of membrane surface integrity. The particles are functionalized by a fluorescent dying agent so that as an ultraviolet light is imposed a bright fluorescent image from the particles can be taken. If a membrane surface is damaged and has a compromised part larger than the size of surrogate the fluorescent particles would pass through and contained in the permeate. An operator can directly notice whether the membrane surface is damaged or not by detecting a fluorescent image taken from the permeate. Additionally, the size of compromised part is estimated through analysing the fluorescent image in which we surmise the mass of particles included in the permeate by calculating an average RGB value of the image. The pilot scale experiments showed that this method could be applied successfully to determine if a membrane surface had a damaged parts regardless of the test condition. In the testing on the actual damaged area of $4.712mm^2$, the lowest error of estimating the damaged area was -1.32% with the surrogate concentration of 80 mg/L, flux of $40L/m^2/hr$ for 25 minutes of detection. A further study is still going on to increase the lowest detection limit and thus decrease the error of estimation.

MBR 공정에서 수온에 따른 막오염 및 CEB 세정효율 특성 (Characterization of membrane fouling and CEB (Chemical enhanced backwashing) efficiency with temperature in SMBR Process)

  • 박기태;박정훈;최은혜;김형수;김지훈
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper, we investigate the characteristics of membrane fouling caused by water temperature in the Membrane bioreactor(MBR) process and try to derive the membrane fouling control by chemical enhanced backwashing(CEB). The extracellular polymeric substances(EPS) concentration was analyzed according to the water temperature in the MBR, and the membrane fouling characteristics were investigated according to the conditions, with sludge & without sludge, through a lab-scale reactor. As shown in the existing literature the fouling resistance rate was increased within sludge with the water temperature was lowered. However, in the lab-scale test using the synthetic wastewater, the fouling resistance increased with the water temperature. This is because that the protein of the EPS was more easily adsorbed on the membrane surface due to the increase of entropy due to the structural rearrangement of the protein inside the protein as the water temperature increases. In order to control membrane fouling, we tried to derive the cleaning characteristics of CEB by using sodium hypochlorite(NaOCl). We selected the condition with the chemicals and the retention time, and the higher the water temperature and the chemical concentration are the higher the efficiencies. It is considered that the increasing temperature accelerated the chemical reaction such as protein peptide binding and hydrolysis, so that the attached proteinaceous structure was dissolved and the frequency of the reaction collision with the protein with the chemical agent becomes higher. These results suggest that the MBRs operation focus on the fouling control of cake layer on membrane surface in low temperatures. On the other hand, the higher the water temperature is the more the operation strategies of fouling control by soluble EPS adsorption are needed.

MBR에서 간헐포기에 의한 오염저감 효과 (Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors)

  • 최영근;김현철;노수홍
    • 멤브레인
    • /
    • 제25권3호
    • /
    • pp.276-286
    • /
    • 2015
  • 30 LMH의 정유량 플럭스로 운전하는 MBR에서, 휴지 및 역세정에 따른 한외여과 분리막의 오염을 조사하였다. 또한, 연속적인 공기세정과 비교하여 분리막 여과저항을 최소화하기 위한 간헐적인 공기세정을 평가하였다. 여과 조건은 14.5분 여과와 0.5분의 휴지를 유지하였으며, 역세정 시간은 휴지 시간과 동일하게 운전하였다. 공기세정이 정지하는 동안에 분리막 표면의 겔층 위에 케?이 빠르게 축척되었으며, 역세정으로 겔층과 케?층의 복합층은 쉽게 제거되었다. 역세정 후에 공기세정이 정지하는 동안 분리막 표면에 케?이 형성되어 공경 내부의 오염현상을 억제하였다. Pearson 상관성을 조사한 결과, 간헐적인 공기세정에서 공기 세정이 정지하는 시간과 분리막의 오염은 매우 연관성이 높다는 것을 알았다. 즉, 간헐적인 세정에서 공기세정이 정지하는 시간이 갈수록 오염억제에 효과적이었다.

실관반응기 내의 Saccharomyces cerevisiae의 고농도 배양을 이용한 에탄올 생산성 (Ethanol Productivity in a Hollow Fiber Membrane Module Using High Density of Saccharomyces cerevisiae)

  • 장호남;양지원박용석정봉현
    • KSBB Journal
    • /
    • 제7권1호
    • /
    • pp.67-71
    • /
    • 1992
  • 50개의 폴리프로필렌 실관과 3개의 테르폰 실관으로 구성된 실관반응기에서 Saccharomyces cerevisiae효모를 이용하여 알콜의 연속 생산을 연구하였다. 생산된$CO_2$는 테프론 실관으로 내어 보냈고 과잉효모 세포는 shell-side를 통하여 제거하였다. Shell-side 부피를 기준으로 세포농도는 266g/L였고 알콜 생산성은 205g/L를 얻었다. 질소 결핍배지를 사용했을 경우 생산성이 너무 낮아 실제 응용할 가치는 없었다.

  • PDF