• Title/Summary/Keyword: membrane action

Search Result 548, Processing Time 0.032 seconds

Apoptosis-Inducing Activity of Galloylglucoses from Juglans mandshurica in Human Promyeloid Leukemic HL-60 Cells

  • Min, Byung-Sun;Kwon, Ok-Kyoung;Park, Bo-Young;Kim, Young-Ho;Hattori, Masao;Joung, Hyouk;Lee, Hyeong-Kyu
    • Natural Product Sciences
    • /
    • v.10 no.1
    • /
    • pp.48-53
    • /
    • 2004
  • Two galloyl monosaccharides, 1,2,6-trigalloylglucose (1, TRgG) and 1,2,3,6- tetragalloylglucose (2, TEgG), were isolated from the stem-bark of Juglans mandshurica. Two galloylglucoses showed cytotoxic effects on human promyelocytic leukemia HL-60 cells. In order to elucidate their mechanism of action, we have investigated the flow cytometric analysis after Annexin V-FITC and PI staining, caspase-3 activity, and internucleosomal DNA fragmentation in HL-60 cells. HL-60 cells treated with both compounds 1 and 2 at 150 and $100\;{\mu}M$, respectively, led to a morphological features of apoptosis, such as plasma membrane blebbing and cell shrinkage. TRgG (1) and TEgG (2) increased the percentage of $FITC^+\;and\;FITC^+PI^+$ cells in flow cytometry after Annexin V-FITC and PI staining. The increase of apoptotic cells was preceded by the activation of caspase-3 reported to play a central role in apoptotic process and inducing internucleosomal DNA fragmentation. TEgG (2) showed to have stronger apoptosis inducing activity in HL-60 cell lines as compared with TRgG (1).

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

Two Cases of Mad-Honey Poisoning with Cardiovascular Symptom (외국산 꿀(석청) 복용후 발생한 심혈관계 중독증상 환자 2례)

  • Ko Young-Gil;Kim Kyung-Hwan;Kim Ah-Jin;Shin Dong-Wun;Park Jun-Soek;Roh Jun-Young;Ahn Ji-Young
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.1
    • /
    • pp.78-81
    • /
    • 2006
  • Mad-honey poisoning is mainly brought about by the honey imported from Napal, Turkey, Brazil and other parts of Europe. This mad honey is extracted from Ericaceae plants of Rhododendron species and contains grayanotoxins that causes poisoning. These toxic compounds exert a specific stimulatory action on membrane permeability to Na+ions in various excitable tissues and cause depolarization of cell membranes. The toxic effects of grayanotoxins contained honey are mainly cardiovascular disturbances with bradycardia, cardiac arrhythmia, hypotension. There are Other symptoms like nausea, vomiting, salivation, dizziness, weakness and loss of consciousness. The precise amount for a toxic dose is not known. In general the severity of the honey poisoning depends on the amount ingested. Two cases of mad-honey poisoning are described here. Both patients showed bradycardia and arterial hypotension after ingestion of honey which was brought from Nepal. They were recovered fully within 24 hours after administration of fluids and atropine sulphate.

  • PDF

Gamma fatty acid : A review (감마지방산 : 리뷰)

  • Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.446-458
    • /
    • 2008
  • Essential fatty acids (EFA) are fatty acids that must be obtained from the diet because they can not be biosynthesized by human or animals. Gamma fatty acids contain gamma-linolenic acid (GLA, 18:3n-6) and dihomo-gamma-linolenic acid (DHGLA, 20:3n-6) as intermediate metabolites of linoleic acid (LA, 18:2n-6), which is an EFA found in vegetable oils. GLA is an important essential fatty acid that is required by human and animals to function normally. Recently, studies have indicated that GLA may be an essential component of the cell membrane, as well as an active component of dietary supplements and medicine. GLA must beadministered through the diet because it is converted into DHGLA in the body quickly and completely. DHGLA is a key material involved in the metabolism of LA. GLA is biosysthesized by the rate limiting step of ${\Deltac}^6$-desaturase, which is an enzyme that desaturates LA, there by allowing it to be converted into DHGLA via chain elongation. In addition, DHGLA exerts bioactive effects via action as a precursor of eicosanoid series 1. Breast milk contains an abundant amount of GLA; however, GLA is also available directly in evening primrose oil, black currant seed oil, borage oil and hemp seed oil. In addition, GLA enriched animal and plant can be produced using biotechnology, and highly pure GLA can be extracted using supercritical fluids, such as supercritical carbon dioxide, which will allow economically feasible production of GLA for use in medicines.

Controlled Release of Tamsulosin from Nanopore-Forming Granules (미세 다공성 과립을 이용한 탐스로신의 방출제어)

  • Seo, Seong-Mi;Lee, Hyun-Suk;Lee, Jae-Hwi;Lee, Ha-Young;Lee, Bong;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Tamsulosin or a salt thereof such as its hydrochloride salt has been known to have an adrenaline ${\alpha}$ receptor blocking action for urethra and prostate areas. It has been widely used as a drug which lowers the prostate pressure and improves urinary disturbance accompanied by prostate-grand enlargement, thus for the treatment of prostatic hyperplasia. To avoid dose-dependent side effects of tamsulosin upon oral administration, the development of sustained-release delivery system is essentially required, that can maintain therapeutic drug levels for a longer period of time. The aim of this study was therefore to formulate sustained-release tamsulosin granules and assess their formulation variables. We designed entric coated sustained-release tamsulosin granules for this purpose. Nano-pores in the outer controlled release membrane were needed in order to obtain initial tamsulosin release even in an acidic environment such as gastric region. In our sustained release osmotic granule system, hydroxypropylmethylcellulose in a drug-containing layer was used as a rate controller. The drug-containing granules were coated with hydroxypropylmethylcellulose phthalate (HPMCP) and Eudragit, along with glycerol triacetate as an aqueous nano-pore former. The release of tamsulosin depended heavily on the type of Eudragit such as RS, RL, NE 30D, used in the formulation of controlled release layer. These results obtained clearly suggest that the sustained-release oral delivery system for tamsulosin could be designed with satisfying drug release profile approved by the Korean Food and Drug Administration.

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract

  • Jung, Hyun-Joo;Cho, Young-Wook;Lim, Hye-Won;Choi, Hojin;Ji, Dam-Jung;Lim, Chang-Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This work aimed to assess some pharmacological activities of P. leptostachya var. asiatica Hara. The dried roots of P. leptostachya var. asiatica Hara were extracted with 70% ethanol to generate the powdered extract, named PLE. Anti-angiogenic activity was detected using chick chorioallantoic membrane (CAM) assay. In vitro anti-inflammatory activity was evaluated via analyzing nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and reactive oxygen species (ROS) level in the stimulated macrophage cells. Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) activities in the culture media were detected using zymography. PLE exhibits an anti-angiogenic activity in the CAM assay, and displays an inhibitory action on the generation of NO in the LPS-stimulated macrophage cells. In the stimulated macrophage cells, it is able to diminish the enhanced ROS level. It can potently scavenge the stable DPPH free radical. It suppresses the induction of iNOS and COX-2 and the enhanced MMP-9 activity in the stimulated macrophage cells. Both monooxygenase and oxidase activities of tyrosinase were strongly inhibited by PLE. Taken together, the dried roots of P. leptostachya var. asiatica Hara possess anti-angiogenic, anti-inflammatory, antioxidant and skin whitening activities, which might partly provide its therapeutic efficacy in traditional medicine.

The Cholesterol-Binding Antibiotic Nystatin Induces Expression of Macrophage Inflammatory Protein-1 in Macrophages

  • Baek, Seungil;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2013
  • Nystatin, a polyene antifungal antibiotic, is a cholesterol sequestering agent. The antifungal agent alters composition of the plasma membrane of eukaryotic cells, whereas its effects on cells are poorly investigated. In the current study, we investigated the question of whether nystatin was able to induce expression of macrophage inflammatory protein-1 (MIP-1). THP-1 cells rarely express MIP-$1{\alpha}$ and MIP-$1{\beta}$, however, upon exposure to nystatin, significantly elevated expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed in a dose-dependent fashion at the messenger and protein levels. Cellular factors activated by nystatin as well as involved in nystatin-induced expression of MIP-1 proteins were identified in order to understand the molecular mechanisms of action of the anti-fungal agent. Treatment with nystatin resulted in enhanced phosphorylation of Akt, ERK, p38 MAPK, and JNK. Abrogation or significant attenuation of nystatin-induced expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed by treatment with Akt inhibitor IV, LY294002, and SP6001250. Inhibition of ERK or p38MAPK using U0126 and SB202190 did not lead to attenuation of MIP-1 expression. In addition, inhibitors of protein kinase C, such as GF109203X and Ro-318220, also attenuated expression of MIP-1. These results indicate that nystatin is able to activate multiple cellular kinases and, among them, Akt and JNK play primary roles in nystatin-induced expression of MIP-1 proteins.

Roles of Reactive Oxygen Species on Neuronal Excitability in Rat Substantia Gelatinosa Neurons (척수 아교질 신경세포의 흥분성에 대한 활성산소종의 역할)

  • Choi, Jeong-Hee;Kim, Jae-Hyo;Lim, Sung-Jun;Park, Byung-Rim;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.432-437
    • /
    • 2007
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on substantia gelatinosa (SG) neurons in spinal cord slice of neonatal rats to investigate the effects of ROS on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, induced a electrical hyperexcitability during t-BuOOH wash-out followed by a brief inhibition of excitability in SG neurons. Application of t-BuOOH depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. Phenyl-N-tert-buthylnitrone (PBN), an ROS scavenger, antagonized t-BuOOH induced hyperexcitability. IN voltage clamp conditions, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). In order to determine the site of action of t-BuOOH, miniature excitatory postsynaptic currents (mEPSCs) were recorded. t-BuOOH increased the frequency and amplitude of mEPSCs, indicating that it may modulate the excitability of the SG neurons via pre- and postsynaptic actions. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord.

Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells

  • Jang, Yeo Jin;Won, Jong Hoon;Back, Moon Jung;Fu, Zhicheng;Jang, Ji Min;Ha, Hae Chan;Hong, SeungBeom;Chang, Minsun;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2015
  • Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and $150{\mu}M$), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.