• Title/Summary/Keyword: member structures

Search Result 979, Processing Time 0.036 seconds

Case Study of Precast Concrete Erection Work of the Heavy-Loaded Long Span Structure (초대형 건축물의 PC부재 양중작업 사례연구)

  • Cho, Wonhyun;Na, Youngju;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.58-59
    • /
    • 2016
  • Along with the logistics development, heavy-loaded warehouses and sales facilities tend to be bigger and designed as a PC structures. PC erection work of heavy-loaded structures is influenced by various factors, including the required construction duration, site and surrounding situations, safety, PC member procurement, equipment rental cost, which ultimately impact the construction cost. It requires creative efforts and a lot of time when preparing an erection plan in consideration of these factors, and the plan prepared has a great influence on safety as well as the construction duration and cost. However, many engineers do not have enough experiences on PC erection work of heavy-loaded, long span structures, making it difficult for them to set erection plans and establish simulations. The study's results will provide a knowledge to obtain a solution for engineers to establish PC erection plans of heavy-loaded, long span structures.

  • PDF

Failure Pattern of Space Frame Pier Structures and Simple Check Method for Seismic Performance (입체 라멘 교각 구조물의 파괴 패턴 및 간이 내진성능 평가법)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • In order to check the necessity of seismic reinforcement for a great number of existing structures effectively, it might be desirable to introduce the multi-step seismic evaluation system. This paper presents close relationships between shear-to-moment capacity ratio of a member and seismic performance of structures concerned through the failure mechanism investigation in the view of geological and structural characteristics. Based on it, the simple seismic performance evaluation method has been proposed and its effectiveness was verified by comparing with the damage condition of structures damaged under Hyogo-Ken Nambu Earthquake.

  • PDF

Nonlinear Dynamic Response Characteristics with Variations in the Lower Stories of Mixed Building Structures (복합구조물의 하부층수 변화에 따른 비선형 동적응답특성)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.443-450
    • /
    • 2001
  • The Mixed building structures can be divided into three partition, namely, upper wall, lower frame, and transfer system which link two partitions. The purpose of this study is to investigate the nonlinear response characteristics of structures, as the stories of lower frame of mixed building structures changes. The recorded earthquake ground motions of EI Centro 1940 NS is adopted, and the maximum ground accelerations are adjusted to 55ga1, 110ga1, 220ga1, 330ga1. The conclusions of this study are the following. 1) The responses of model that the story of lower frame is one were different from those of other models. 2) The process of ductility hinge occurrence of member was ends of coupling beam of upper wall and ends of beam of lower frame in 55ga1, bases of shear wall on pit floor in 110ga1, and bases of column of 1F in 220ga1.

  • PDF

A Theoretical Investigation on Shakedown Analysis of Framed Structures (강뼈대 구조물의 소성안정 해석에 관한 이론적 연구)

  • Lee, Jong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.71-77
    • /
    • 1988
  • For the collapse of structures due to the variable repeated load, two types of collapse mechanisms, i.e., incremental collapse and alternating plasticity, exist. Under the similar variable repeated loading conditions there exists shakedown state in the structures. In shakedown state, the number of plastic hinges are not increased and all further loading will be resulted in the elastic moment changes. Namely, under the shakedown state, structures do not collapse. In this investigation, shakedown analysis are performed by composing new computer programs. Basic theories employed to compose the programs are as follows. 1. Newton-Raphson methods are added to the existing matrix method for the plastic analysis. 2. An effort to construct the stiffness of axial and bending springs attached at both ends of the member has been made. By using the programs developed, it is possible to anticipate the collapse mechanisms (Incremental collapse, alternating plasticity). Lastly for the verification of performance of the program, demonstration examples have been solved and the results are compared with other sources.

  • PDF

Aging Coefficient Formula of Reinforced Concrete Members under Axial Compression (축하중을 받는 철근콘크리트 부재의 재령계수식 제안)

  • Yoo, Jae-Wook;Yu, Eun-Jong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2013
  • The Age-adjusted effective Modulus Method(AEMM) is one of the methods adopted for the construction stage analysis of concrete structures. The AEMM uses the aging factor to consider the effects of the varying concrete stress. In the aspects of computation time and the accuracy of the results, the AEMM is considered as one of most appropriate methods for construction stage analysis of tall building structures. Previous researches proposed appropriate values of the aging factor in the forms of graphs or using very simple equations. In this paper, an equation for estimating the aging factor as a function of rebar ratio in the section, compressive strength of concrete, notional member dimension, and age of concrete at the load application. The validity of aging factor proposed in this paper were examined by the comparison with the results of step-by step method.

Pseudo plastic zone analysis of steel frame structures comprising non-compact sections

  • Avery, P.;Mahendran, M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.371-392
    • /
    • 2000
  • Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

An extension of an improved forced based design procedure for 3D steel structures

  • Peres, R.;Castro, J.M.;Bento, R.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1115-1140
    • /
    • 2016
  • This paper proposes an extension of the Improved Forced Based Design procedure to 3D steel structures. The Improved Forced Based Design (IFBD) procedure consists of a more rational sequence of the design checks proposed in Eurocode 8 and involves a more realistic selection of the behaviour factor instead of selecting an empirical value based on the ductility class and lateral resisting system adopted. The design procedure was tested on a group of four 3D steel structures, composed by moment-resisting frames with three storeys height and the same plan configuration in all storeys. The plan configuration was defined in order to target lateral restrained or unrestrained systems as well as plan regular or irregular structures. The same group of structures was also designed according to the force-based process prescribed in Eurocode 8. The member sizes obtained through the two approaches were compared and the seismic performance was assessed through nonlinear static and time-history analyses. The limit states referred to structural and non-structural damage, considering the two levels design approach, which are the serviceability and the ultimate limit states, were examined. The results obtained reveal that the IFBD leads to more economical structures that still comply with the performance requirements prescribed in Eurocode 8.

A Study on the Stress Control Technique of Zetlin-Typed Cable Dome Structures Considering Geometrical Nonlinearity (기학학적 비선형을 고려한 Zetlin형 케이블 돔 구조물의 장력제어 기법에 관한 연구)

  • Jeong, Eul-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.116-124
    • /
    • 2005
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.