• Title/Summary/Keyword: member failure propagation

Search Result 8, Processing Time 0.024 seconds

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

Characteristics of AE Signals from Fatigue Crack Propagation and Penetration of a Surface Crack in 6061 Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Existing surface defects in structural members often act as sites of fatigue crack initiation, and if undetected, these cracks may grow through the thickness of the member, leading to catastrophic failure of the structure. Thus, in-service monitoring of fatigue cracks through reliable and effective nondestructive techniques is an important ingredient in the leak-before-break (LBB) design and safe operation of defects critical structures. An advanced, waveform-based, acoustic emission (AE) technique has been used in this paper to study the characteristics of the signals emanating from the initiation, growth and through-the -thickness penetration of surface fatigue crack in a 6061 aluminum plate. The goal of this experimental study is to determine whether the evolution of the fatigue crocks could be identified from the properties of the waveforms produced during the tests. The AE waveform signals detected at different stages of crack growth was found to have different temporal and spectral characteristics. The data analysis technique presented here can be applied to real-time monitoring of the initiation and propagation of fatigue cracks in structural components.

  • PDF

Modelling of Shear Localisation in Geomaterials

  • Lee, Jun-Seok;Pan
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-32
    • /
    • 1997
  • In this paper, an enhanced finite element model based on homogenisation technique is proposed to capture the localized failure mode of the intact rock masses. For this, bifurcation analysis at the element level is performed and, once the bifurcation is detected, equivalent material properties of the shear band and neighbouring intact rock are used to trace the post -peak behaviour of the material. It is demonstrated that mesh sensitivity of the strain softening model is overcome and progressive failure mode of rock specimen can be simulated relaistically. Furthermore, the numerical results show that the crack propagation and final failure mode can be captured with relatively coarse meshes and compares well with the experimental data available.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Development of Progressive Collapse Analysis Program considering Dynamic Effects (동적효과를 고려한 연쇄붕괴해석 프로그램의 개발)

  • Kim, Jin-Koo;Park, Jun-Hee;An, Da-Woon;Kim, Hyun-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.771-776
    • /
    • 2007
  • Widespread propagation of failure can be triggered by localized damage to a structure because of fires, impact and explosion etc. In this paper, the progressive collapse analysis program is developed to automatically check the failed members and construct the modified structural model at each step. OpenSees, that is widely used in many research groups, was used for the developed progressive collapse analysis control program. The control program developed in this study automatically computes the damage indices of all the structural members and performance a progressive collapse analysis after the first failed member is selected. Using the developed program, we compared the progressive collapse behaviors of the example structures considering dynamic effects or not, and the difference of progressive collapse mechanism according to the modeling method of the failed members.

  • PDF

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.