• Title/Summary/Keyword: melting regime

Search Result 18, Processing Time 0.028 seconds

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

An Analytical Solution for the Unsteady Close-Contact Melting by Convective Heating (대류가열 비정상 접촉융해에 대한 해석해)

  • Yoo, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.450-458
    • /
    • 2000
  • This study deals with the unsteady close-contact melting of solid blocks on a flat surface subject to convective heating. Normalizing the model equations in reference to the steady solution successfully leads them to cover constant heat flux and isothermal limits at small and large extremes of the Biot number, respectively. The resulting equations admit a compactly expressed analytical solution, which includes the previous solutions as a subset. Based on the steady solution, the characteristics of close-contact melting can be categorized into constant heat flux, transition, and isothermal regimes, the boundaries of which appear to be nearly independent of the contact force. The unsteady solutions corresponding to Biot numbers in the transition regime show intermediate behaviors between those of the two limits. With a proper approximation, the present solution procedure can cope with the case of variable fluid temperature and heat transfer coefficient. Regardless of imposed conditions, the mean normalized Nusselt number during the unsteady process asymptotically approaches to a constant value as the Biot number comes close to each limit.

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Experimental Study of Natural Convectiion Heat Transfer from a Horizontal Ice Cylinder Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 수평 얼음원기둥에 의해 야기되는 자연대류 열전달의 실험적 해석)

  • 유갑종;추홍록;문종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1019-1030
    • /
    • 1994
  • Natural convection heat transfer from a horizontal ice cylinder immersed in quiescent cold pure water was studied experimentally. The experiment was conducted for the ambient water temperatures ranging from $2.0^{\cric}C$ to $10.0^{\circ}C$. The flow fields around an ice cylinder and its melting shapes were visualized and local Nusselt numbers obtained. Especially, its attention was focused on the density maximum effects and stagnation point Nusselt number. From the visualized photographs of flow fields, three distinct flow patterns were observed with the ambient water temperature variation. The melting shapes of ice cylinder are various in shape with flow patterns. Steady state upflow was occured at the range of $2.0^{\circ}C \leq T_{\infty} \leq 4.6^{\circ}C$ and steady state downflow was occured at $T_{\infty} \geq 6.0^{\circ}C$. In the range of $4.7^{\circ}C < T_{\infty} < 6.0^{\circ}C$, three-dimensional unsteady state flow was observed. Especially, the melting shapes of ice cylinder have formed the several spiral flutes for the temperatures ranging from $5.5^{\circ}C$ to $5.8^{\circ}C$. For upflow regime, the maximum stagnation point Nusselt number exists at $T_{\infty} = 2.5^{\circ}C$ and as the ambient water temperature increases the Nusselt number decreases. At ambient water temperature of about $5.7^{\circ}C$, Nusselt number shows its minimum value.

Study of Post Excimer Laser Annealing effect on Silicide Mediated Polycrystalline Silicon. (실리사이드 매개 결정화된 다결정 실리콘 박막의 후속 엑시머 레이저 어닐링 효과에 대한 연구)

  • Choo, Byoung-Kwon;Park, Seoung-Jin;Kim, Kyung-Ho;Son, Yong-Duck;Oh, Jae-Hwan;Choi, Jong-Hyun;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study we investigated post ELA(Excimer Laser Annealing) effect on SMC (Silicide Mediated Crystalization) poly-Si (Polycrystalline Silicon) to improve the characteristics of poly-Si. Combining SMC and XeCl ELA were used to crystallize the a-Si (amorphous Silicon) at various ELA energy density for LTPS (Low Temperature Polycrystalline Silicon). We fabricated the conventional SMC poly-Si with no SPC (Solid Phase Crystallization) phase using UV heating method[1] and irradiated excimer laser on SMC poly-Si, so called SMC-ELA poly-Si. After using post ELA we can get better surface morphology than conventional ELA poly-Si and enhance characteristics of SMC poly-Si. We also observed the threshold energy density regime in SMC-ELA poly-Si like conventional ELA poly-Si.

  • PDF

Temporal variation of magma chemistry in association with extinction of spreading, the fossil Antarctic-Phoenix Ridge, Drake Passage, Antarctica

  • Choe, Won-Hie;Lee, Jong-Ik;Lee, Mi-Jung;Hur, Soon-Do;Jin, Young-Keun
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.136-141
    • /
    • 2005
  • The K Ar ages, whole rock geochemistry and Sr Nd Pb isotopes have been determined for the submarine basalts dredged from the P2 and P3 segments of the Antarctic-Phoenix Ridge (APR), Drake Passage, Antarctica, for better understanding on temporal variation of magma chemistry in association with extinction of seafloor spreading. The fossilized APR is distant from the known hot spots, and consists of older N-MORB prior to extinction of spreading and younger E-MORB after extinction. The older N-MORB (3.5-6.4 Ma) occur in the southeast flank of the P3 segment (PR3) and the younger E-MORB (1.4-3.1 Ma) comprise a huge seamount at the P3 segment (SPR) and a big volcanic edifice at the P2 segment (PR2). The N-type PR3 basalts have higher Mg#, K/Ba, and CaO/Al2O3 and lower Zr/Y, Sr, and Na8.0 with slight enrichment in incompatible elements and almost flat REE patterns. The E-type SPR and PR2 basalts are highly enriched in incompatible elements and LREE. The extinction of spreading occurring at 3.3 Ma seems to have led to a temporal magma oversupply with E-MORB signatures. Geochemical signatures such as Ba/TiO2, Ba/La, and Sm/La suggest heterogeneity of upper mantle and formation of E-MORB by higher contribution of enriched materials to mantle melting, compared to N-MORB environment. E-MORB magmas beneath the APR seem to have been produced by low melting degree (up to 1% or more) at deeper low-temperature regime, where metasomatized veins consisting of pyroxenites have preferentially participated in the melting. The occurrence of E-MORB at the APR is a good example to better understand what kinds of magmatism would occur in association with extinction of spreading.

  • PDF

HYDROGEN BEHAVIOR IN THE IRWST OF APR1400 FOLLOWING A STATION BLACKOUT

  • Kim, Han-Chul;Suh, Nam-Duk;Park, Jae-Hong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.195-200
    • /
    • 2006
  • In order to confirm the integrity of IRWST following a severe accident, the hydrogen behavior inside and around the IRWST has been investigated for an SBO accident. A detailed containment model, including 18 control volumes for IRWST, has been developed. Analysis results show that the peak hydrogen concentration is about 57% during the core melting period. The combustion regime shows that flame acceleration and DDT are possible in the IRWST. The flame acceleration criterion is met when the peak hydrogen concentration occurs; the 7 -DDT criterion is also met during some periods. These results show certain measures may be required to assure IRWST integrity against an SBO accident.

Holocene paleoenvironmental changes in the Lake Khuvsgul, Northern Mongolia (몽골 북부 흡수굴호의 홀로세 동안의 고환경 변화)

  • Orkhonselenge, A.;Kashiwaya, K.;Ochiai, S.;Krivonogov, S.K.;Nakamura, T.
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The present study has focused on the environmental changes and evidences for sedimentation in the Lake Khuvsgul catchment during the Holocene period, inferred from short core sediment (BO03) from the eastern shore of Borsog Bay, which were analyzed in order to review records of the Holocene climatic evolution and Holocene history in Northern Mongolia. For the purpose of reconstruction of natural phenomenon that occurred in the lake catchment system during the Holocene, physical and chemical properties including HCl-soluble material, biogenic silica, organic matter and grain size distribution of minerals in the core sediments have been analyzed in this study. The vertical variations in composition for these properties show distinctly that five lines of paleoenvironmental evidence occurred in the lake catchment during the Holocene. A modified age model resulting from AMS carbon dating for the BO03 core sediment shows timings of these environmental events at 9.5 Kyr BP, 8.0 Kyr BP, 5.6 Kyr BP and 3.2 Kyr BP, respectively. Paleoenvironmental changes in the Lake Khuvsgul catchment system during the Holocene highlight distinctive features of the hydrological regime and geomorphologic evolution in the lake catchment due to regional landscape and global climatic changes corresponding with the Holocene optimum and thermal optimum. In particular, the change of hydrologic regime based on the sedimentological evidence has been caused by not only overland flow due to melting water, but also base flow due to thick permafrost around Khuvsgul region.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kyeongsang Basin, Korea: Possibility of Magma Heterogeneity (경상분지 백악기 화산암류에 대한 암석화학적 고찰: 이원성 마그마의 가능성)

  • Sung, Jong Gyu;Kim, Jin Seop;Lee, Joon Dong
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.249-264
    • /
    • 1998
  • The Creataceous volcanic rocks distributed in the southeastern part (Kyeongsang basin) of Korea peninsula are composed of basalt, basaltic andesite, andesite, dacite and rhyolite. The variation of major elements show that contents of MgO, CaO, $FeO^T$, $Al_2O_3$, $TiO_2$ and $P_2O_5$ decrease with increasing of $SiO_2$, but $K_2O$ contents are increased slightly, $Na_2O$ widely dispersed. We can show slightly inflection point and low frequency of dacites in range between 63-65 wt.% $SiO_2$, while continuous trend exit in variation diagram. Variation trends in Harker diagrams for the major, minor, trace and REEs suggest that the BAV (basaltic to andesitic volcanics) and DRV (dacitic to rhyolitic volcanics) are not related to a simple crystal fractionation process. In the regime of under 65 wt. % in silica content, fractionation of olivine and clinopyroxene is predominant, while that of plagioclase happens strongly higher than 65 wt.% (e.g., $SiO_2$, vs. Eu and Sr, MgO vs. $Al_2O_3$ and CaO). The latter means low-pressure fractional crystallization for DRV. On the discriminant diagram, DRV are located in more mature environment than BAV. The $(Ce/Sm)_N$ vs. CeN digram shows that these two classes cannot be related to crystal fractionation. If they had been produced by fractionation, although they plotted in a slightly elongate cluster along the same horizontal trend, DRV should lie to the right of these primitive compositions. These diagrams clearly rule out a simple fractionation throughout from BAV to DRV. BAV had been influenced greatly subductiong slab as shown by K/Yb vs. Ta/Yb. We suggest that BAV primitive magma generated higher degree of partial melting than DRV primitive magma. LILE (K, Ba, $Rb{\pm}Th$) enriched characteristics as shown in BAV are inherited from subducting slab fluids and/or higher degree of partial melting of mantle material. However, lower degree of partial melting of mantle relative to BA V and contamination at high-level magma reservoir caused LILE enrichment to DRV.

  • PDF

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.