• Title/Summary/Keyword: melting plant

Search Result 110, Processing Time 0.032 seconds

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Ultra-rapid Real-time PCR for the Detection of Tomato yellow leaf curl virus (초고속 Real-time PCR을 이용한 Tomato yellow leaf curl virus의 신속진단)

  • Kim, Tack-Soo;Choi, Seung-Kook;Ko, Min-Jung;Lee, Minho;Choi, Hyung Seok;Lee, Se-Weon;Park, Kyungseok;Park, Jin-Woo
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.298-303
    • /
    • 2012
  • Tomato yellow leaf curl virus (TYLCV), transmitted exclusively by the whitefly (Bemisia tabaci) in a circulative manner is one of the most important virus in tomato. Since the first report of TYLCV incidence in Korea in 2008, the virus has rapidly spread nationwide. TYLCV currently causes serious economic losses in tomato production in Korea. Early detection of TYLCV is one of the most important methods to allow rouging of infected tomato plants to minimize the spread of TYLCV disease. We have developed an ultra-rapid and sensitive real-time polymerase chain reaction (PCR) using a new designed real-time PCR system, GenSpectorTM TMC-1000 that is a small and portable real-time PCR machine requiring only a $5{\mu}l$ reaction volume on microchips. The new system provides ultra-high speed reaction (30 cycles in less than 15 minutes) and melting curve analysis for amplified TYLCV products. These results suggest that the short reaction time and ultra sensitivity of the GenSpector$^{TM}$-based real-time PCR technique is suitable for monitoring epidemics and pre-pandemic TYLCV disease. This is the first report for plant virus detection using an ultra-rapid real-time PCR system.

Effect of Moisture on the Melting Point and High-Temperature Stability of NaKZn-Chloride (수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향)

  • Lee, Jeong Hwan;Kim, Young;Yoon, Seok Ho;Lee, Kong Hoon;Choi, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.555-560
    • /
    • 2018
  • The high temperature stability of a chloride mixture, $NaCl-KCl-ZnCl_2$ (NaKZn-Chloride), is investigated to evaluate its potential as a thermal storage material. A thermal storage media should maintain a stable thermal properties within the temperature range of heat storage. Results from an a priori experiment showed that the NaKZn-chloride is stable only up the much lower temperature, while its stability limit is reported to be $850^{\circ}C$ in the literature. This study aims to investigate if the thermal property is changed by the moisture absorbed in the heat storage material. The effect of moisture content on the thermal properties was measured. The results show that the melting point remains the same regardless of the amount of moisture absorbed. Meanwhile, the high temperature stability is lower for the moisture treated samples. The results of this work infer that the loss of a hygroscopic thermal storage media can be reduced by avoiding its contacts to moisture in designing high temperature thermal storage systems.

Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

  • Xie, Li-hua;Quan, Xin;Zhang, Jie;Yang, Yan-yan;Sun, Run-hong;Xia, Ming-cong;Xue, Bao-guo;Wu, Chao;Han, Xiao-yun;Xue, Ya-nan;Yang, Li-rong
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

Decontamination Performance Assessment for the Plasma Arc Vitrification pilot plant on the basis of Trial Burn Results(I) - Decontamination Characteristics for Hazardous Metal, Radioactive surrogate and Radioactive Tracer in Off-gas (시험연소결과에 근거한 플라즈바 아크방식 유리화 시험 설비의 제염성능 평가(I) - 배기가스중의 유해중금속, 방사성핵종 모의물질 및 방사성핵종 제염특성 -)

  • Chae, Gyung-Sun;Park, Youn-Hwan;Min, Byong-Yun;Chang, Jae-Ock;Park, Jun-Yong;Jeong, Weon-Ik;Moon, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • Through the results of off-gas analysis at 3 sampling points in Plasma Arc Melting vitrification pilot plant, it was evaluated the partitioning of spiked materials in off-gas and the decontamination characteristic of off-gas treatment system. Spiked materials are hazard_us heavy metals(Pb, Cd, Hg), radioactive surrogate(Co, Cs) and radioactive materials($^{60}Co,\;^{137}Cs$). Through the Trial burn tests, Decontamination factor of spiked materials in off-gas treatment system is calculated.

  • PDF

Waterlogging induced oxidative stress and the mortality of the Antarctic plant, Deschampsia antarctica

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.289-296
    • /
    • 2019
  • We investigated the mortality and the oxidative damages of Deschampsia antarctica in response to waterlogging stress. In field, we compared the changes in the density of D. antarctica tuft at the two different sites over 3 years. The soil water content at site 2 was 6-fold higher than that of site 1, and the density of D. antarctica tuft decreased significantly by 55.4% at site 2 for 3 years, but there was no significant change at site 1. Experimental results in growth chamber showed that the $H_2O_2$ and malondialdehyde content increased under root-flooding treatment (hypoxic conditions-deficiency of $O_2$), but any significant change was not perceptible under the shoot-flooding treatment (anoxic condition-absence of $O_2$). However, total chlorophyll, soluble sugar, protein content, and phenolic compound decreased under the shoot-flooding treatment. In addition, the catalase activity increased significantly on the 1st day of flooding. These results indicate that hypoxic conditions may lead to the overproduction of reactive oxygen species, and anoxic conditions can deplete primary metabolites such as sugars and protein in the leaf tissues of D. antarctica. Under present warming trend in Antarctic Peninsula, D. antarctica tuft growing near the shoreline might more frequently experience flooding due to glacier melting and inundation of seawater, which can enhance the risk of this plant mortality.

A Six Sigma Project for Reducing the Color Variation of the Monitor Materials (모니터 소재의 색상편차 개선을 위한 6시그마 프로젝트)

  • 홍성훈;반재석
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.166-176
    • /
    • 2001
  • This paper considers a six sigma project for reducing the color variation of the monitor materials in a chemical plant. The project follows a disciplined process of five macro phases: define, measure, analyze, improve, and control (DMAIC). A process map is used to identify process input variables. Three key process input variables are selected by using an input variable evaluation table; a melting pressure, a coloring agent, and a DP color variation. DOE is utilized for finding the optimal process conditions of the three key process input variables. The sigma level of defects rate becomes a 4.58 from a 2.0 at the beginning of the project.

  • PDF

BOF Refining of Fluorspar Substitute Using Iron Oxide Based By-product (산화철계 형석대체제의 전로 정련특성)

  • Keum, C.H.;Hur, B.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.336-340
    • /
    • 2006
  • Fluorspar has been essential flux in steelmaking process. The main effects of fluorspar addition are lowering of the viscosity and melting temperature of slag. In recent years, due to the increasing price and environmental problem of fluorspar, various types of fluorspar substitute have been investigated. In this study, iron oxide by-products such as sinter dust, basic oxygen furnace (BOF) sludge and mill scale were developed as a substitute in terms of waste recycling. Several plant trials were carried out by addition of briquetted substitutes of $4{\sim}6$ kg/ton to compare with the fluorspar of $0.7{\sim}1$ kg/ton. The substitutes showed a similar behavior of slag formation, phosphorus removal and MgO saturation content.

Specification of Governing Factors for High Accurate Prediction of Welding Distortion (용접변형 고정도 예측을 위한 지배인자의 특정)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2013
  • In carrying out the elastic-plastic analysis, four conditions (equilibrium equation, constitutive equation, condition of compatibility and yield condition) should be satisfied. In welding, the temperature largely changed from a melting temperature to a room temperature. So, yield stress of materials largely changed, too. In particular, yield stress becomes about zero over $700^{\circ}C$. The analysis should be carried out under the condition that equivalent stress generated in temperature increment ${\Delta}T$ did not exceed yield stress of materials at high temperature over $700^{\circ}C$. It should be sufficiently recognized that the obtained results were not reliable if this condition was not satisfied.

EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

  • Dewitt, G.;Mckrell, T.;Buongiorno, J.;Hu, L.W.;Park, R.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.335-346
    • /
    • 2013
  • The Critical Heat Flux (CHF) of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR) situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs). CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume) on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition) are needed to obtain substantial CHF enhancement with nanofluids.