• Title/Summary/Keyword: melt mixing method

Search Result 33, Processing Time 0.032 seconds

Comparing the Effect of Three Processing Methods for Modification of Filament Yarns with Inorganic Nanocomposite Filler and their Bioactivity against Staphylococcus aureus

  • Dastjerdi, Roya;Mojtahedi, M.R.M.;Shoshtari, A.M.
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.378-387
    • /
    • 2009
  • This research compared three methods for producing and processing nanocomposite polypropylene filament yarns with permanent antimicrobial efficiency. The three methods used to mix antimicrobial agents based on silver nano particles with PP were as follows: 1) mixing of PP powder and inorganic nanocomposite filler with the appropriate concentration using a twin-screw extruder and preparing granules, 2) method 1 with a singlerather than twin-screw extruder, and 3) producing the masterbatch by a twin-screw extruder and blending it with PP in the melt spinning process. All pure polypropylene samples and other combined samples had an acceptable spinnability at the spinning temperature of $240^{\circ}C$ and take-up speed of 2,000 m/min. After producing as-spun filament yarns by a pilot plant, melt spinning machine, the samples were drawn, textured and finally weft knitted. The physical and structural properties (e.g., linear density, tenacity, breaking elongation, initial modulus, rupture work, shrinkage and crystallinity) of the as-spun and drawn yarns with constant and variable draw ratios (the variable draw ratio was used to gain a constant breaking elongation of 50%) were investigated and compared, while DSC, SEM and FTIR techniques were used to characterize the samples. Finally, the antibacterial efficiency of the knitted samples was evaluated. The experimental results revealed that the crystallinity reduction of the as-spun yarn obtained from method 1 (5%) was more than that of method 2 (3%), while the crystallinity of the modified as-spun yarns obtained with method 3 remained unchanged compared to pure yarn. However, the drawing procedure compensated for this difference. By applying methods 2 and 3, the drawing generally improved the tenacity and modulus of the modified fibers, whereas method 1 degraded the constant draw ratio. Although the biostatic efficiency of the nanocomposite yarns was excellent with all three methods, the modified fabrics obtained from methods 1 and 2 showed a higher bioactivity.

Rheological characterization of nanoparticle filled polymeric systems

  • Kim, Byoung-Chul;Chae, Dong-Wook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.219-219
    • /
    • 2006
  • This study focuses on the effects of dispersion method of a nanoparticle in a polymer matrix such as melt mixing, solution blending, and in-situ polymerization on the physical properties of the nanocomposites. Introduction of a nanoparticle to a polymer resulted in some unusual physical properties. In some cases the nanoparticle played a role of a nucleating agent, leading to decreasing induction time to crystallization. In addition, the dispersion state of the nanoparticle in the polymer matrix also had a significant influence on the physical properties of the nanocomposites. Hence the method of introducing the nanoparticle to the polymer made contribution to the rheological properties of the nanocomposite systems.

  • PDF

Preparation and Mechanical Properties of SBS/Clay Nanocomposites (SBS/Clay나노복합체의 제조 및 기계적 특성)

  • Choi, Hyun-Kuk;Park, Se-Hyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Styrene-butadiene-styrene copolymer(SBS)/Clay nanocomposites were prepared by melt mixing method with organic clay modified with dimethyl dihydrogenated-tallow amine(Cloisite 15A) and methyl tallow bis (2-hydroxy-ethyl) amine(Cloisite 30A), respectively. From the results of XRD, we found that mono layered silicates were dispersed in SBS matrix and they were exfoliated nanocomposites. Mechanical properties of exfoliated SBS nanocomposites were more improvedl than those of SBS. Especially, it was found that the addition of small amount of organoclay was enough to improve mechanical properties without increasing hardness.

Characteristics of BSCCO Superconductor Tube Using Partial Melting Process (부분용융법을 이용한 BSCCO 초전도 튜브 특성)

  • 박용민;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.25-28
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming process(CFP). As a variation of melt casting process(MCP) or centrifugal casting technique, the centrifugal forming process is a flexible method for manufacturing Bi-2212 bulk tubes and has been optimized to achieve smooth surface and uniform thickness. At this process, the slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm Heat-treatment was performed at the temperature ranges of 860 ~ $890^{\circ}C$ in air for partial melting. The HTS tube fabricated by centrifugal forming process at $890^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20$\mu$m were well oriented along the rotating axis. The measured Tc and Jc at 10K were around 85K and 3,000A/cm2 respectively.

  • PDF

Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Yun, Seok-Il;Ahn, Kay-Hyeok
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.320-324
    • /
    • 2009
  • We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF

Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • In this work, expanded graphite (EG)-reinforced poly(ethylene terephthalate) (PET) nanocomposites were prepared by the melt mixing method and the content of the EG was fixed as 2 wt%. The effect of multi-walled carbon nanotubes (MWCNTs) as a co-carbon filler on the electrical and mechanical properties of the EG/PET was investigated. The results showed that the electrical and mechanical properties of the EG/PET were significantly increased with the addition of MWCNTs, showing an improvement over those of PET prepared with EG alone. This was most likely caused by the interconnections in the MWCNTs between the EG layers in the PET matrix. It was found that the addition of the MWCNTs into EG/PET led to dense conductive networks for easy electron transfers, indicating a bridge effect of the MWCNTs.

Properties of $SiC/MoSi_2$ Composites Prepared by Reaction Sintering Method (반응소결에 의한 $SiC/MoSi_2$ 복합체의 특성)

  • 한인섭;양준환;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.399-406
    • /
    • 1994
  • The SiC/MoSi2 composite material was prepared by infiltration with the mixture of metal Si and MoSi2 into the preform of $\alpha$-SiC and graphite under the vacuum atmosphere of 10-1 torr. The mechanical properties, phases and microstructural characteristics have been investigated by employing an universal testing machine, scanning electron microscope and X-ray diffractometer. With the increase of MoSi2/Si mixing content, the quantity of the residual silicon phase was decreased and the hardness and fracture toughness of composite materials were increased. Also, as the infiltration temperature increased, a lot of fine-grained $\beta$-SiC phases, which were produced from the reaction of graphite and liquid silicon melt, were transformed to $\alpha$-SiC phases.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Single Crystal Growth of Synthetic Emerald by Reflux Method of Temperature Gradient used Natural Beryl (천연베릴을 이용한 온도구배 환류법에 의한 합성 Emerald 단결정 육성)

  • 최의석;김무경;이종민;안영필;서청교;안찬준
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.519-521
    • /
    • 1996
  • Emerald (3BeO.Al2O3.6SiO2 : Cr3+) single crystals were crystals were grown by reflux method of temperature gradient in the flux solution of Li2O-MoO3-V2O5 system. The composition of flux materials were 3 mole ratio of MoO3-V2O5/Li2O, subtituted 0.2 mole% of K2O, Na2O, Nb2O5 etc to Li2O content, solved 10-15% of beryl to flux quantity and doped 1% of Cr2O3 to emerald amount. Those of mixing were melted at 110$0^{\circ}C$ in Pt containers of the 3 zone furnace of melt-growth-return to circulate continniously, specially it has been grown large emerald single crystal when thermal fluctuation was treated for 2hrs of once time a day at 1050-95$0^{\circ}C$ in growth zone, substitutional solid solution effect of Cr+3 ion for Al+3 to the growth of emerald single crystal was good. Emerald single crystals were c(0001) hexagonal crystal face of preferencial growth direction and m(1010) post side. When it had been durated for 5 months emerald single crystals of the firet size of 0.6mm thickness of seed crystal were grown 32$\times$65mm(c x m) of maximum size and 6.2mm thickness.

  • PDF