Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.051

Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites  

Kim, Ki-Seok (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 51-55 More about this Journal
Abstract
In this work, expanded graphite (EG)-reinforced poly(ethylene terephthalate) (PET) nanocomposites were prepared by the melt mixing method and the content of the EG was fixed as 2 wt%. The effect of multi-walled carbon nanotubes (MWCNTs) as a co-carbon filler on the electrical and mechanical properties of the EG/PET was investigated. The results showed that the electrical and mechanical properties of the EG/PET were significantly increased with the addition of MWCNTs, showing an improvement over those of PET prepared with EG alone. This was most likely caused by the interconnections in the MWCNTs between the EG layers in the PET matrix. It was found that the addition of the MWCNTs into EG/PET led to dense conductive networks for easy electron transfers, indicating a bridge effect of the MWCNTs.
Keywords
poly(ethylene terephthalate); expanded graphite; carbon nanotubes; electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen P, Kim HS, Jin HJ. Preparation, properties and application of poly amide/carbon nanotube nanocomposites. Macromol Res, 17, 207 (2009).   DOI   ScienceOn
2 Kalaitzidou K, Fukushima H, Drzal LT. A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol, 67, 2045 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.11.014.   DOI   ScienceOn
3 Park SJ. Long-range force contributions to surface dynamics. In: Hsu JP, ed. Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 387 (1999).
4 Yan J, Fan Z, Wei T, Qie Z, Wang S, Zhang M. Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites. Mater Sci Eng B, 151, 174 (2008). http://dx.doi.org/10.1016/j.mseb.2008.05.018.   DOI   ScienceOn
5 Duquesne S, Le Bras M, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym Degrad Stab, 74, 493 (2001). http://dx.doi.org/10.1016/s0141-3910(01)00177-x.   DOI   ScienceOn
6 Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV. Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon, 47, 263 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.004.   DOI   ScienceOn
7 Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol, 67, 2528 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.12.009.   DOI   ScienceOn
8 Kim S, Park SJ. Preparation and electrocatalytic activities of platinum nanoclusters deposited on modified multi-walled carbon nanotubes supports. Anal Chim Acta, 619, 43 (2008). http://dx.doi.org/10.1016/j.aca.2008.02.064.   DOI   ScienceOn
9 Chung DDL. Electrical applications of carbon materials. J Mater Sci, 39, 2645 (2004). http://dx.doi.org/10.1023/B:JMSC.0000021439.18202.ea.   DOI   ScienceOn
10 Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 47, 2036 (2006). http://dx.doi.org/10.1016/j.polymer.2006.01.029.   DOI   ScienceOn
11 Liu W, Do I, Fukushima H, Drzal LT. Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett, 11, 279 (2011).   DOI
12 Wang J, Chen G, Chatrathi MP, Musameh M. Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. Anal Chem, 76, 298 (2004). http://dx.doi.org/10.1021/ac035130f.   DOI   ScienceOn
13 Kim KS, Rhee KY, Lee KH, Byun JH, Park SJ. Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. J Ind Eng Chem, 16, 572 (2010). http://dx.doi.org/10.1016/j.jiec.2010.03.017.   DOI   ScienceOn
14 Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol, 64, 2309 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.025.   DOI   ScienceOn
15 Du XS, Xiao M, Meng YZ, Hay AS. Synthesis and properties of poly(4,4′-oxybis(benzene)disulfide)/ graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers. Polymer, 45, 6713 (2004). http://dx.doi.org/10.1016/j.polymer.2004.07.026.   DOI   ScienceOn
16 Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K. Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett, 11, 325 (2011).   DOI
17 Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edgeplane sites and tube ends are the reactive sites. Chem Commun, 829 (2005). http://dx.doi.org/10.1039/b413177k.
18 Xiao M, Lu Y, Wang SJ, Zhao YF, Meng YZ. Poly(arylene disulfide)/ graphite nanosheets composites as bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources, 160, 165 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.085.   DOI   ScienceOn
19 Afanasov IM, Shornikova ON, Avdeev VV, Lebedev OI, Tendeloo GV, Matveev AT. Expanded graphite as a support for Ni/carbon composites. Carbon, 47, 513 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.034.   DOI   ScienceOn
20 Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428, 911 (2004). http://dx.doi.org/10.1038/nature02498.   DOI   ScienceOn
21 Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multiwalled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A, 385, 13 (2004). http://dx.doi.org/10.1016/j.msea.2004.03.041.   DOI   ScienceOn