• Title/Summary/Keyword: melt blending

Search Result 85, Processing Time 0.02 seconds

PP-PHE Blend Fiber (후염성 폴리프로필렌 섬유 제조(II))

  • 정재훈;손태원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.47-52
    • /
    • 1996
  • PP-PHE blends were prepared by mechanical blending using relatively high moecular weight polyhydrozyether(PHE) and popypropylene polymers. PP-PHE blends were prepared and characterized for the purpose of obtaining a dycable PP fibers with the composition of less than 10 wt.% of PHE. 1)yeable PP fibers were acquired through the melt spinning of the PP-PHE blend of comprising less than 10 wt.% of PHE. The resultant fibers had tensile strength of 2~3 g/d, elongation of 330~600%, initial modulus of 22~46 g/d and yield stress of 1.0 g/d, and exhibited markedly improved dyeing ability such as higher absorbance, higher dye adsorption and deeper shade than those of pure PP fiber.

  • PDF

High Temperature Microporous Membrane by Thermally Induced Phase Separation (TIPS) Process

  • 황정림;김성수;김재진;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.41-42
    • /
    • 1992
  • 고내열 및 고내화학적 특성을 갖는 미세다공성 고분자막의 개발을 위한 기초연구가 수행되었다. 본 연구에서는 고분자막 제조기법의 첨단기술로 등장한 열유도상 분리공정(Thermally Induced Phase Separation, 이하 TIPS)이 도입되었다. TIPS 공정은 고분자를 고분자의 용융점을 상회하는 온도에서 매우 미세하게 분산시킬 수 있는 희석제를 고분자와 함께 melt-blending하여 균일한 single phase의 용액을 만들고 이를 적당한 막의 형태로 성형한 후, 가해진 열을 제거하여 냉각시킴에 따라 polymer-rich phase 와 polymer-poor phase 로 구성되는 two phase system으로 상분리를 일으키는 방법이다. 이때 polymer-poor phase를 차지하는 희석제를 제거함에 따라 고분자 matrix 내에는 void volume이 형성되고, 그 결과 고분자 matrix 전체적으로 다공성이 부여되어 고분자막으로서의 기본적인 기능을 갖추게 된다.

  • PDF

Tensile, Thermal and Morphological Properties of Ballmilled Clay/Wood Flour Filled Polypropylene Nanocomposites

  • Lee, Sun-Young;Kang, In-Aeh;Chun, Sang-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.160-167
    • /
    • 2008
  • Nanocomposites with polypropylene/clay/wood flour were prepared by melt blending and injection molding. Thermal, mechanical and morphological properties were characterized. The addition of ballmilled clay, compatibilizer and wood flour significantly improved the thermal stability of the hybrids. The tensile modulus and strength of most hybrids was highly increased with the increased loading of clay, maleated polypropylene (MAPP) and wood flour (WF), compared to the PP/WF hybrids. The tensile modulus and strength of most hybrids were highly increased with the increased loading of ballmilled clay, MAPP and wood flour, compared to the hybrids with PP/WF. The transmission electron microscopy (TEM) photomicrographs illustrated the intercalated and partially exfoliated structures of the hybrids with ballmilled clay, MAPP and wood flour.

Properties of the Blends of HDPE and EPDM Cured under Shear by Roll Mill (Roll Mill에서 가교된 EPDM과 HDPE 블렌드의 물성에 관한 연구)

  • Ha, Chang-Sik;Cho, Won-Jei
    • Elastomers and Composites
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 1991
  • Blends of ethylene-propylene-diene terpolymer(EPDM) and high density polyethylene(HDPE) have been prepared in a roll mill by the process "dynamic curing" where both blending and a crosslinking reaction was carried out simultaneously. As a crosslinking agent, dicumyl peroxide(DCP) was used. Throughout the experimental ranges, the dynamically cured polyblends were shown to be thermoplastic elastomers except highly crosslinked blends of high compositions of EPDM. The increase of melt viscosity was observed as EPDM composition and DCP contents increased. From DSC determinations, the crystallinity decreased with increasing contents of DCP. The tensile strength and elongation at break generally increased with increasing DCP content and increasing HDPE compositions, but highly depended on the combined effects of decreasing crystallinity and increasing crosslinking density.

  • PDF

Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites (말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향)

  • Han, Dong-Heon;Lee, Jong In;Oh, Seung-Ju;Nam, Byeong Uk;Bae, Jin Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.275-282
    • /
    • 2021
  • High-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA) compatibilizers were prepared by melt grafting in a twin screw extruder using di(tert-butyl-perxoyisopropyl)benzene (PK-14; as initiator), maleic anhydride (MA), and divinylbenzene (DVB). To determine the properties of the prepared HMMA-g-PLA compatibilizers, Fourier transform infrared (FTIR), Melt index (MI), and back-titration analyses were performed. On increasing DVB concentration, grafting yield of HMMA-g-PLA increased but MI decreased because 𝛽-scission of PLA was restrained by the DVB, and thus, the molecular weight of HMMA-g-PLA increased. PLA-based wood-plastic composites (WPCs) were prepared using HMMA-g-PLA by melt blending through a single screw extruder. The flexural and impact strengths of WPCs compatibilized with HMMA-g-PLA were greater than those of WPCs produced without HMMA-g-PLA. Scanning electron microscope (SEM) studies indicated that increased mechanical properties were caused by excellent interfacial adhesion between PLA and wood fibers due to the addition of HMMA-g-PLA. However, rather high contents of HMMA-g-PLA reduced the mechanical properties of WPCs. We believe that lower molecular-weight of HMMA-g-PLA added as an compatibilizer, compared with PLA polymer, caused the reduction of mechanical properties.

Mechanical Property Enhancement of Water Soluble Polymer Pouch for Ground Reinforcement (지반함몰 긴급복구용 수용성 폴리머 파우치의 기계적 물성강화)

  • Jung, Dongho;Chung, Dasom;You, Seung-Kyong;Kim, Joo-Hyun;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-230
    • /
    • 2017
  • We developed a polymer pouch using PVP that is water soluble in the precedent study. Yet melt viscosity was so low that it was not possible to produce hemispheric type which is essential for mass production, therefore we used another material to make the polymer pouch. It enabled to figure out a water-soluble transition and mechanic physical property of PEG that is newly chosen, and to blend the PEG with LLDPE and TALC followed by result. So, we could implement an evaluating property on blended proportion. It is important to find out a proper blending ratio throughout an experiment since its property is different or varied followed by each proportion as a water soluble character is conflict to a solid character. With the blending technique we were able to produce the polymer pouch enhanced for a tensile force and an impact intensity maintaining a water soluble character. We could identify a ground solidity effect of the polymer pouch as a result of a direct shear test using the product developed.

Preparation and physical properties of biodegradable polybutylene succinate/polybutylene adipate-co-terephthalate blend monofilament by melt spinning (용융방사에 의한 생분해성 PBS/PBAT 블랜드 모노 필라멘트 제조 및 물리적 특성)

  • Park, Seong-Wook;Kim, Seong-Hun;Choi, Hea-Sun;Cho, Hyun-Hok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • In order to improve the breaking strength and elongation of Polybutylene succinate (PBS) monofilament, the monofilament was produced by blending PBS and Polybutlyne adipate-co-terephthalate (PBAT). The PBS/PBAT blend monofilament was prepared by the melt spinning system, and the weight ratios of the compositions of PBS/PBAT was 100/0, 95/5, 90/10 and 85/15, respectively. The breaking strength, elongation, softness and crystallization of PBS/PBAT blend monofilament were analyzed by using a tensionmeter, softness measurement, X-ray diffractometer in the both dry and wet conditions. The PBS/PBAT blend monofilaments were spun in the take-up velocity of 1.19m/sec under the drawing ratio of 6.8:1 condition. The production volumes of PBS/PBAT blend monofilaments showed 20% less than that of Nylon. The breaking strength of PBS/PBAT blend monofilaments were decreased as PBAT contents increased, while elongation and softness were increased. In case of PBAT content were over 5%, the breaking strength, elongation and softness of PBS/PBAT blend monofilaments were not shown to increase in spite of increasing in PBAT contents. Based on these results, it was possible to make the monofilaments with the maximized physical properties when the PBAT contents at 5%.

Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT (펠렛형 MWCNT를 사용한 PP/MWCNT 나노복합체 물성 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Polypropylene/multi-walled carbon nanotube(PP/MWCNT) composites along with various MWCNT contents up to 20 wt% were prepared by a twin screw extruder. Nanocomposites having 20 wt% MWCNT as a master batch(M/B) were diluted with PP by way of melt compounding. The electrical/thermal conductivity, morphology, thermal/viscoelastic/mechanical properties were investigated with the variation of MWCNT contents. Also, we compared some properties between 1-step PP/MWCNT and the diluted PP/MWCNT composites. The percolation threshold of electrical and thermal conductivity was measured at about 3 wt% MWCNT. And conductivity of diluted PP/MWCNT composites were superior to those of PP/MWCNT composites. The non-isothermal crystallization temperature and thermal decomposition temperature appeared at higher temperatures with increasing MWCNT contents. Morphology showed that length of MWCNT in diluted PP/MWCNT composites was shortened by twice melt blending, which contributed to improve the tensile strength of PP/MWCNT composites.

Comparing the Effect of Three Processing Methods for Modification of Filament Yarns with Inorganic Nanocomposite Filler and their Bioactivity against Staphylococcus aureus

  • Dastjerdi, Roya;Mojtahedi, M.R.M.;Shoshtari, A.M.
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.378-387
    • /
    • 2009
  • This research compared three methods for producing and processing nanocomposite polypropylene filament yarns with permanent antimicrobial efficiency. The three methods used to mix antimicrobial agents based on silver nano particles with PP were as follows: 1) mixing of PP powder and inorganic nanocomposite filler with the appropriate concentration using a twin-screw extruder and preparing granules, 2) method 1 with a singlerather than twin-screw extruder, and 3) producing the masterbatch by a twin-screw extruder and blending it with PP in the melt spinning process. All pure polypropylene samples and other combined samples had an acceptable spinnability at the spinning temperature of $240^{\circ}C$ and take-up speed of 2,000 m/min. After producing as-spun filament yarns by a pilot plant, melt spinning machine, the samples were drawn, textured and finally weft knitted. The physical and structural properties (e.g., linear density, tenacity, breaking elongation, initial modulus, rupture work, shrinkage and crystallinity) of the as-spun and drawn yarns with constant and variable draw ratios (the variable draw ratio was used to gain a constant breaking elongation of 50%) were investigated and compared, while DSC, SEM and FTIR techniques were used to characterize the samples. Finally, the antibacterial efficiency of the knitted samples was evaluated. The experimental results revealed that the crystallinity reduction of the as-spun yarn obtained from method 1 (5%) was more than that of method 2 (3%), while the crystallinity of the modified as-spun yarns obtained with method 3 remained unchanged compared to pure yarn. However, the drawing procedure compensated for this difference. By applying methods 2 and 3, the drawing generally improved the tenacity and modulus of the modified fibers, whereas method 1 degraded the constant draw ratio. Although the biostatic efficiency of the nanocomposite yarns was excellent with all three methods, the modified fabrics obtained from methods 1 and 2 showed a higher bioactivity.

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.