• Title/Summary/Keyword: melanocyte

Search Result 237, Processing Time 0.026 seconds

Anti-wrinkle and Whitening Effects of Essential Oil from Abies koreana (Abies koreana 유래 정유의 항주름 및 미백 효과)

  • Song, Byeong-Wook;Song, Min-Jeong;Park, Mi-Jin;Choi, Don-Ha;Lee, Sung-Suk;Kim, Myungkil;Hwang, Ki-Chul;Kim, Il-Kwon
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.524-531
    • /
    • 2018
  • The essential oil from Abies koreana E.H. Wilson had been developed, however, its efficacy has not yet been studied especially in terms of skin care research. The aim of this study is to investigate the effects of Abies koreana extracts (AKE) on melanogenesis and wrinkle formation in B16F10 melanoma cells (B16F10) and human dermal fibroblast cell line (HDF). The essential oil was extracted by hydrodistillation method and purified by anhydrous sodium sulfate. At a concentration of $10^{-5}$-fold, viability in these cells had been defined by cytotoxicity assays. Anti-melanogenic effects on B16F10 were evaluated using tyrosinase inhibition assay, and real-time PCR for verifying gene expression of tyrosinase, tyrosinase related protein-1 and -2 (TRP-1 and -2). AKEs reduced about 5-fold of tyrosinase inhibitory activity compared to ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH)-induced group and about 30% reduction compared to Arbutin induced group. The mRNA levels of three melanin-related factors were increased, separately. To investigate the effects of anti-wrinkle, procollagen type I c peptide synthesis assay (PIP) and Western blot were performed. At AKE-treated group, PIP was up-regulated and the expression of collagen type 1 and matrix metalloproteinase (MMP)-1 were improved. Furthermore, AKE presented anti-wrinkle effects by increasing UVB-inhibited collagen type 1 expression, and reducing UVB-induced MMP-1 production at $60mJ/cm^2$ of UVB radiation. Therefore, Abies koreana extracts has potentials as a safe and an effective skin ingredient for whitening and anti-wrinkle.

Comparative Analysis of Anti-oxidative, Anti-inflammatory, Anti-allergy, and Whitening Effects of Different Solvent Extracts from Zizania latifolia (고장초 추출 용매의 에탄올 함량에 따른 항산화, 항염증, 항알러지, 미백 활성 비교 분석)

  • Park, Se-Ho;Lee, Jae-Yeul;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.994-1002
    • /
    • 2017
  • This study was performed to evaluate the anti-oxidative, anti-inflammatory, anti-allergy, and whitening effects of Zizania latifolia ethanol extracts prepared from 5 different ethanol concentrations (10, 30, 50, 70, and 90%). As the ethanol concentration in the extraction solvent was increased, the radical scavenging activities also increased. The inhibitory activity of Z. latifolia ethanol extracts on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells tended to increase as the content of ethanol increased. The highest inhibitory activity was obtained with 70% ethanol extract. The antiallergy effects of Z. latifolia ethanol extracts were tested by measuring the release of ${\beta}-hexosaminidase$ in IgE-sensitized RBL-2H3 cells. The suppressive effect of Z. latifolia ethanol extracts increased in a dose-dependent manner as the proportion of ethanol increased, except for the 10% ethanol extract. Furthermore, the inhibitory effects of Z. latifolia ethanol extracts against melanin production in ${\alpha}-melanocyte$ stimulated hormone (MSH)-stimulated B16F0 cells increased as the ethanol ratio increased, and 70 and 90% ethanol extracts showed similar inhibitory activities to arbutin, a positive control, at $250{\mu}m$. The present study confirmed the efficacy of Z. latifolia ethanol extracts in various areas, demonstrating antioxidative, anti-inflammation, antiallergy, skin protective, and skin whitening effects, with no cytotoxicity. It could be used as a raw material in functional foods, as well as in cosmetics.

Development of Natural Antioxidants and Whitening Agents for Cosmeceuticals

  • Kim, Jong-Pyung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.79-92
    • /
    • 2007
  • Oxidative stress have known to be a risk factor for the degenerative processes and closely related to a lot of diseases. It is well established that antioxidants are good in protection and therapeutic means against oxidative damage. There is increasing interest in natural antioxidants and many natural antioxidants have been found and utilized as the possible protection for various diseases and skin aging. We have screened natural antioxidant agents for cosmeceuticals, nutraceuticals, and drugs as therapeutic and preventive means against oxidative stress, and have developed a number of novel antioxidants from various natural sources. A novel melanin synthesis inhibitor, Melanocin A, isolated from the metabolite of a fungal strain Eupenicillium shearii F80695 inhibited mushroom tyrosinase and melanin biosynthesis of B16 melanoma cells with $IC_{50}$ value of 9.0 nM and MIC value of $0.9\;{\mu}M$, respectively. Melanocin A also exhibited potent antioxidant activity by scavenging of DPPH and superoxide anion radicals. UV was found to increase the level of hydrogen peroxides and other reactive oxygen species (ROS) in skin tissues. This increase in ROS may not only alter the structure and function of many genes and proteins directly but may also modulate their expressions through signal transduction pathways and, ultimately, lead to skin damage. We investigated the effect of Melanocin A on UV-induced premature skin aging. Firstly, the effect of Melanocin A on UV-induced matrix metalloproteinase (MMP)-9 expression in an immortalized human keratinocyte cell line, HaCaT in vitro was investigated. Acute UV irradiation induced MMP-9 expression at both the mRNA and protein levels and Melanocin A suppressed this expression in a dose-dependent manner. We then investigated UV-induced skin changes in hairless mice in vivo by Melanocin A. Chronic exposure of hairless mouse dorsal skin to UV increased skin thickness and induced wrinkle formation and the gelatinase activities of MMP-2 and MMP-9. Moreover, Melanocin A significantly suppressed UV-induced morphologic skin changes and MMP-2 and MMP-9 expression. These results show that Melanocin A can prevent the harmful effects of UV that lead to skin aging. Therefore, we suggest that Melanocin A should be viewed as a potential therapeutic agent for preventing and/or treating premature skin aging. Terrein is a bioactive fungal metabolite isolated from Penicillium species. Terrein has a relatively simple structure and can be easily synthesized. However, the biologic effects of terrein are comparatively unknown. We found for the first time that terrein potently inhibit melanin production in melanocytes and has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 mM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrain treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrain reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.

  • PDF

New Whitening Agent : Selina-4(14), 7(11)-dien-8-one (신규 미백제 : Selina-4(14), 7(11)-dien-8-one)

  • Kim, Cheong-Taek;Chang, Yun-Hee;Lee, Sang-Hwa;Kang, Sang-Jin;Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.17-23
    • /
    • 2005
  • We had previously reported that Selina (selina-4(14), 7(11)-dien-8-one) was isolated from methanol extract of Afractylodes rhizome and has strong whitening activity in B16 melanoma cells. In this report, we demonstrated its action mechanism in melan-a cells, non-tumorigenic melanocytes. We also investigated the clinical efficacy of cosmetic preparation containing Selina. Selina reduced the melanin synthesis of Melan-a cells by $50\%$ at a concentration of $10 {\mu}g/mL$ without any apparent cytotoxicity. We also found that the treatment of cells with Selina decreased tyrosinase activity by $60\%$ at a concentration of $10 {\mu}g/mL$ but Selina was not a direct inhibitor of tyrosinase activities. To elucidate the action mechanism of Selina, we investigated the changes in mRNA and protein level of tyrosinase, TRP-1 and TRP-2 using RT-PCR and western blotting, respectively. As a result, the mRNA and protein level of tyrosinase were markedly reduced at $10 {\mu}g/mL$ of Selina without any effect on TRP-1 and TRP-2. These results suggest that Selina exerts its whitening effect mainly through regulating expression of tyrosinase. A 7 week-clinical trial using formulation containing $0.2\%$ selina-4(14), 7(11)-dien-8-one with 20 volunteers resulted in statistically significant whitening effect (p < 0.05), without any adverse effect. Based on these results, Selina (selina-4(14), 7(11)-dien-8-one) can be s useful and safe ingredient for the cleanness and brightness of skin.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF

Protective Effects of an Ethanol Extract of Elaeagnus umbellata Leaves on α-MSH-induced Melanin Production in B16-F0 Cells and UVB-induced Damage in CCD-986sk Cells (보리수나무 잎 에탄올 추출물이 α-MSH 유도 B16-F0 세포의 멜라닌 생성 및 UVB 유도성 CCD-986sk 세포 손상에 미치는 효과)

  • Park, Se-Ho;Jhee, Kwang-Hwan;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.555-563
    • /
    • 2019
  • This study was undertaken to investigate the effect of an ethanol extract of Elaeagnus umbellata leaves (EUL-EE) on skin-related biological activities. Previously, we have reported that gallic acid was the major phenolic compound in EUL-EE through quantitative analysis and that EUL-EE had an inhibitory effect against the proliferation of liver cancer HepG2 cells. In the present study, the inhibitory effects of EUL-EE on melanin production and tyrosinase activity in ${\alpha}$-melanocyte-stimulated hormone-stimulated B16-F0 cells were determined to assess the effects of EUL-EE on skin whitening. The anti-wrinkle effect using UVB-irradiated CCD-986sk cells was examined by the expression of type I procollagen and metalloproteinase (MMP)-1 release. The EUL-EE significantly decreased intracellular melanin production (33.0% inhibition at $100{\mu}g/ml$) when compared with untreated B16-F0 cells. Tyrosinase activities in the stimulated B16-F0 cells were also decreased by EUL-EE (47.8% inhibition at $100{\mu}g/ml$). The EUL-EE also dose-dependently increased the production of type I procollagen (up to 1.74-fold at $250{\mu}g/ml$) in CCD-986sk cells when compared with UVB-irradiated controls. EUL-EE showed no cytotoxicity at concentrations up to $500{\mu}g/ml$. In addition, EUL-EE at $10-500{\mu}g/ml$ inhibited the release of MMP-1 to the medium from UVB-irradiated CCD-986sk cells. Taken together, these observations indicate that EUL-EE has high potential for use as inner beauty and cosmetic materials due to its whitening and anti-wrinkle effects.

A Novel Synthesized Tyrosinase Inhibitor, (E)-3-(4-hydroxybenzylidene) chroman-4-one (MHY1294) Inhibits α-MSH-induced Melanogenesis in B16F10 Melanoma Cells (신규 합성물질 (E)-3-(4-하이드록시벤질리딘)크로마논 유도체의 티로시나아제 효소활성 저해 및 멜라닌 생성 억제 효과)

  • Jeon, Hyeyoung;Lee, Seulah;Yang, Seonguk;Bang, EunJin;Ryu, Il Young;Park, Yujin;Jung, Hee Jin;Chung, Hae Young;Moon, Hyung Ryong;Lee, Jaewon
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.719-728
    • /
    • 2021
  • Melanin pigments are abundantly distributed in mammalian skin, hair, eyes, and nervous system. Under normal physiological conditions, melanin protects the skin against various environmental stresses and acts as a physiological redox buffer to maintain homeostasis. However, abnormal melanin accumulation results in various hyperpigmentation conditions, such as chloasma, freckles, senile lentigo, and inflammatory pigmentation. Tyrosinase, a copper-containing enzyme, plays an important role in the regulation of the melanin pigment biosynthetic pathway. Although several whitening agents based on tyrosinase inhibition have been developed, their side effects, such as allergies, DNA damage, mutagenesis, and cytotoxicity of melanocytes, limit their applications. In this study, we synthesized 4-chromanone derivatives (MHY compounds) and investigated their ability to inhibit tyrosinase activity. Of these compounds, (E)-3-(4-hydroxybenzylidene)chroman-4-one (MHY1294) more potently inhibited the enzymatic activity of tyrosinase (IC50 = 5.1±0.86 μM) than kojic acid (14.3±1.43 μM), a representative tyrosinase inhibitor. In addition, MHY1294 showed competitive inhibitory action at the catalytic site of tyrosinase and had greater binding affinity at this site than kojic acid. Furthermore, MHY1294 effectively inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis and intracellular tyrosinase activity in B16F10 melanoma cells. The results of the present study indicate that MHY1294 may be considered as a candidate pharmacological agent and cosmetic whitening ingredient.