• 제목/요약/키워드: mel-frequency cepstral coefficient

검색결과 67건 처리시간 0.026초

지능형 서비스 로봇을 위한 잡음에 강인한 문맥독립 화자식별 시스템 (Noise Robust Text-Independent Speaker Identification for Ubiquitous Robot Companion)

  • 김성탁;지미경;김회린;김혜진;윤호섭
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.190-194
    • /
    • 2008
  • 본 논문은 지능형 서비스 로봇의 여러 기술들 중에서 기본적인 기술인 화자식별 기술에 관한 내용이다. 화자식별 기술은 화자의 음성신호를 이용하여 등록된 화자들 중에서 가장 유사한 화자를 찾아내는 것이다. 기존의 mel-frequency cepstral coefficient 를 이용한 화자식별 시스템은 무잡음 환경에서는 높은 성능을 보장하지만 잡음환경에서는 성능이 급격하게 떨어진다. 이렇게 잡음환경에서 성능이 떨어지는 요인은 등록환경과 식별환경이 다른 불일치문제 때문이다. 본 논문에서는 불일치문제를 해결하기 위해 relative autocorrelation sequence mel-frequency cepstral coefficient 를 사용하였다. 또한, 기존의 relative autocorrelation sequence mel-frequency cepstral coefficient 의 제한된 정보문제와 잔여잡음문제를 해결하기 위해 멀티스트리밍 방법과 멀티스트리밍 방법에 특정벡터 재결합 방법을 결합한 하이브리드 방법을 제한 하였다. 실험결과 제한된 방법들이 기존의 특정벡터보다 잡음환경에서 높은 화자식별 성능을 보여주었다.

  • PDF

감정에 강인한 음성 인식을 위한 음성 파라메터 (Speech Parameters for the Robust Emotional Speech Recognition)

  • 김원구
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

감정 음성 인식을 위한 강인한 음성 파라메터 (Robust Speech Parameters for the Emotional Speech Recognition)

  • 이규현;김원구
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.681-686
    • /
    • 2012
  • 본 논문에서는 강인한 감정 음성 인식 시스템을 개발하기 위하여 감정의 영향을 적게 받는 음성 파라메터에 대한 연구를 수행하였다. 이러한 목적을 위하여 다양한 감정이 포함된 데이터를 사용하여 감정이 음성 인식 시스템과 음성 파라메터에 미치는 영향을 분석하였다. 본 연구에서는 멜 켑스트럼, 델타 멜 켑스트럼, RASTA 멜 켑스트럼, 루트 켑스트럼, PLP 계수와 성도 길이 정규화 방법에서 주파수 와핑된 멜 켑스트럼 계수를 사용하였다. 또한 신호 편의 제거 방법으로 CMS 방법과 SBR 방법이 사용되었다. 실험결과에서 성도정규화 방법을 사용한 RASTA 멜 켑스트럼, 델타 멜 켑스트럼 및 CMS 방법을 사용한 경우가 HMM 기반의 화자독립 단독음 인식 실험 결과에서 가장 우수한 결과를 나타내었다.

양서류 울음 소리 식별을 위한 특징 벡터 및 인식 알고리즘 성능 분석 (Performance assessments of feature vectors and classification algorithms for amphibian sound classification)

  • 박상욱;고경득;고한석
    • 한국음향학회지
    • /
    • 제36권6호
    • /
    • pp.401-406
    • /
    • 2017
  • 본 논문에서는 양서류 울음소리를 통한 종 인식 시스템 개발을 위해, 음향 신호 분석에서 활용되는 주요 알고리즘의 인식 성능을 평가했다. 먼저, 멸종위기 종을 포함하여 총 9 종의 양서류를 선정하여, 각 종별 울음소리를 야생에서 녹음하여 실험 데이터를 구축했다. 성능평가를 위해, MFCC(Mel Frequency Cepstral Coefficient), RCGCC(Robust Compressive Gammachirp filterbank Cepstral Coefficient), SPCC(Subspace Projection Cepstral Coefficient)의 세 특징벡터와 GMM(Gaussian Mixture Model), SVM(Support Vector Machine), DBN-DNN(Deep Belief Network - Deep Neural Network)의 세 인식기가 고려됐다. 추가적으로, 화자 인식에 널리 사용되는 i-vector를 이용한 인식 실험도 수행했다. 인식 실험 결과, SPCC-SVM의 경우 98.81 %로 가장 높은 인식률을 확인 할 수 있었으며, 다른 알고리즘에서도 90 %에 가까운 인식률을 확인했다.

숨은마코프모형을 이용하는 음성구간 추출을 위한 특징벡터 (A New Feature for Speech Segments Extraction with Hidden Markov Models)

  • 홍정우;오창혁
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.293-302
    • /
    • 2008
  • 본 논문에서는 숨은마코프모형을 사용하여 음성구간을 추출하는 경우에 사용되는 새로운 특징벡터인 평균파워를 제안하고, 이를 멜주파수 켑스트럴 계수(met frequency cepstral coefficients, MFCC)와 파워계수와 비교한다. 이들 세 가지 특징벡터의 수행력을 비교하기 위하여 일반적으로 추출이 상대적으로 어렵다고 알려진 파열음을 가진 단어에 대한 음성 데이터를 수집하여 실험한다. 다양한 수준의 잡음이 있는 환경에서 음성구간을 추출하는 경우 MFCC나 파워계수에 비해 평균파워가 더 정확하고 효율적임을 실험을 통해 보인다.

Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식 (Feature Parameter Extraction and Speech Recognition Using Matrix Factorization)

  • 이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1307-1311
    • /
    • 2006
  • 본 연구에서는 행렬 분해 (Matrix Factorization)를 이용하여 음성 스펙트럼의 부분적 특정을 나타낼 수 있는 새로운 음성 파라마터를 제안한다. 제안된 파라미터는 행렬내의 모든 원소가 음수가 아니라는 조건에서 행렬분해 과정을 거치게 되고 고차원의 데이터가 효과적으로 축소되어 나타남을 알 수 있다. 차원 축소된 데이터는 입력 데이터의 부분적인 특성을 표현한다. 음성 특징 추출 과정에서 일반적으로 사용되는 멜 필터뱅크 (Mel-Filter Bank)의 출력 을 Non-Negative 행렬 분해(NMF:Non-Negative Matrix Factorization) 알고리즘의 입 력으로 사용하고, 알고리즘을 통해 차원 축소된 데이터를 음성인식기의 입력으로 사용하여 멜 주파수 캡스트럼 계수 (MFCC: Mel Frequency Cepstral Coefficient)의 인식결과와 비교해 보았다. 인식결과를 통하여 일반적으로 음성인식기의 성능평가를 위해 사용되는 MFCC에 비하여 제안된 특정 파라미터가 인식 성능이 뛰어남을 알 수 있었다.

강인한 음성인식을 위한 극점 필터링 및 스케일 정규화를 이용한 켑스트럼 특징 정규화 방식 (Cepstral Feature Normalization Methods Using Pole Filtering and Scale Normalization for Robust Speech Recognition)

  • 최보경;반성민;김형순
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.316-320
    • /
    • 2015
  • 본 논문에서는 Cepstral Mean Normalization(CMN)과 Cepstral Mean and Variance Normalization(CMVN) 프레임워크에서 극점 필터링(pole filtering) 개념을 Mel-Frequency Cepstral Coefficient(MFCC) 특징 벡터에 적용한다. 또한 분산 정규화를 대신하여 스케일 정규화를 사용하는 Cepstral Mean and Scale Normalization(CMSN)의 성능을 잡음 환경 음성인식 실험을 통해 평가한다. CMN과 CMVN은 보통 발화 단위로 수행되기 때문에 짧은 발화의 경우 특징에 대한 평균과 분산의 추정 신뢰도가 보장되지 않는 문제점을 가지는데, 극점 필터링과 스케일 정규화 방식을 적용함으로 이러한 문제점을 보완할 수 있다. Aurora 2 데이터베이스를 이용한 실험 결과, 극점 필터링과 스케일 정규화를 결합한 특징 정규화 방식의 성능이 가장 높은 성능 향상을 보인다.

위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘 (Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1149-1154
    • /
    • 2017
  • 배경잡음 하에서 음성인식 시스템의 우수한 인식성능을 얻기 위해서 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서 사용한 특징 파라미터는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수(Mel frequency cepstral coefficient, MFCC)를 사용한다. 즉, 본 논문에서 제안하는 특징 파라미터는 배경잡음을 제거한 후에 깨끗한 음성신호의 파라미터를 추출하는 새로운 방법이다. 제안한 수정된 MFCC 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다. 본 실험에서는 14차의 MFCC 특징 파라미터를 사용하여 화자독립 인식실험을 실시하였으며, 백색잡음이 혼합된 경우의 음성의 화자독립인식률은 평균 94.48%로 효과적인 결과를 구할 수 있었다. 본 논문에서 제안한 방법과 기존의 방법들을 비교하였을 때 본 논문에서 제안한 화자인식 성능이 수정된 MFCC 특징 파라미터를 사용함으로써 향상되었다.

스마트폰 환경의 인증 성능 최적화를 위한 다중 생체인식 융합 기법 연구 (Authentication Performance Optimization for Smart-phone based Multimodal Biometrics)

  • 문현준;이민형;정강훈
    • 디지털융복합연구
    • /
    • 제13권6호
    • /
    • pp.151-156
    • /
    • 2015
  • 본 논문에서는 스마트폰 환경의 얼굴 검출, 인식 및 화자 인증 기반 다중생체인식 개인인증 시스템을 제안한다. 제안된 시스템은 Modified Census Transform과 gabor filter 및 k-means 클러스터 분석 알고리즘을 통해 얼굴의 주요 특징을 추출하여 얼굴인식을 위한 데이터 전처리를 수행한다. 이후 Linear Discriminant Analysis기반 본인 인증을 수행하고(얼굴인식), Mel Frequency Cepstral Coefficient기반 실시간성 검증(화자인증)을 수행한다. 화자인증에 사용하는 음성 정보는 실시간으로 변화하므로 본 논문에서는 Dynamic Time Warping을 통해 이를 해결한다. 제안된 다중생체인식 시스템은 얼굴 및 음성 특징 정보를 융합 및 스마트폰 환경에 최적화하여 실시간 얼굴검출, 인식과 화자인증 과정을 수행하며 단일 생체인식에 비해 약간 낮은 95.1%의 인식률을 보이지만 1.8%의 False Acceptance Ratio를 통해 객관적인 실시간 생체인식 성능을 입증하여 보다 신뢰할 수 있는 시스템을 완성한다.

Design and Development of Open-Source-Based Artificial Intelligence for Emotion Extraction from Voice

  • Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.79-87
    • /
    • 2024
  • 본 연구는 청각 장애인의 의사소통 개선을 목표로, 음성 데이터에서 감정을 인식하고 분류하는 인공지능 모델을 개발하였다. 이를 위해 CNN-Transformer, HuBERT-Transformer, 그리고 Wav2Vec 2.0 모델을 포함하는 세 가지 주요 인공지능 모델을 활용하여, 사용자의 음성을 실시간으로 분석하고 감정을 분류한다. 음성 데이터의 특징을 효과적으로 추출하기 위해 Mel-Frequency Cepstral Coefficient(MFCC)와 같은 변환 방식을 적용, 음성의 복잡한 특성과 미묘한 감정 변화를 정확하게 포착하고자 하였다. 실험 결과, HuBERT-Transformer 모델이 가장 높은 정확도를 보임으로써, 음성기반 감정 인식 분야에서의 사전 학습된 모델과 복잡한 학습 구조의 융합이 효과적임을 입증하였다. 본 연구는 음성 데이터를 통한 감정 인식 기술의 발전 가능성을 제시하며, 청각 장애인의 의사소통과 상호작용 개선에 기여할 수 있는 새로운 방안을 모색한다는 점에서 의의를 가진다.