• Title/Summary/Keyword: medium-range forecast

Search Result 33, Processing Time 0.022 seconds

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석: Part I. 라디오존데 관측 자료 평가 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.213-226
    • /
    • 2009
  • In order to investigate the characteristics of Changma over the Korean peninsula, KEOP-2007 IOP (Intensive Observing Period) was conducted from 15 June 2007 to 15 July 2007. KEOP-2007 IOP is high spatial and temporal radiosonde observations (RAOB) which consisted of three special stations (Munsan, Haenam, and Ieodo) from National Institute of Meteorological Research, five operational stations (Sokcho, Baengnyeongdo, Pohang, Heuksando, and Gosan) from Korea Meteorological Administration (KMA), and two operational stations (Osan and Gwangju) from Korean Air Force (KAF) using four different types of radiosonde sensors. The error statistics of the sensor of radiosonde were investigated using quality control check. The minimum and maximum error frequency appears at the sensor of RS92-SGP and RS1524L respectively. The error frequency of DFM-06 tends to increase below 200 hPa but RS80-15L and RS1524L show vice versa. Especially, the error frequency of RS1524L tends to increase rapidly over 200 hPa. Systematic biases of radiosonde show warm biases in case of temperature and dry biases in case of relative humidity compared with ECMWF (European Center for Medium-Range Weather Forecast) analysis data and precipitable water vapor from GPS. The maximum and minimum values of systematic bias appear at the sensor of DFM-06 and RS92-SGP in case of temperature and RS80-15L and DFM-06 in case of relative humidity. The systematic warm and dry biases at all sensors tend to increase during daytime than nighttime because air temperature around sensor increases from the solar heating during daytime. Systematic biases of radiosonde are affected by the sensor type and the height of the sun but random errors are more correlated with the moisture conditions at each observation station.

Validations of Typhoon Intensity Guidance Models in the Western North Pacific (북서태평양 태풍 강도 가이던스 모델 성능평가)

  • Oh, You-Jung;Moon, Il-Ju;Kim, Sung-Hun;Lee, Woojeong;Kang, KiRyong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Eleven Tropical Cyclone (TC) intensity guidance models in the western North Pacific have been validated over 2008~2014 based on various analysis methods according to the lead time of forecast, year, month, intensity, rapid intensity change, track, and geographical area with an additional focus on TCs that influenced the Korean peninsula. From the evaluation using mean absolute error and correlation coefficients for maximum wind speed forecasts up to 72 h, we found that the Hurricane Weather Research and Forecasting model (HWRF) outperforms all others overall although the Global Forecast System (GFS), the Typhoon Ensemble Prediction System of Japan Meteorological Agency (TEPS), and the Korean version of Weather and Weather Research and Forecasting model (KWRF) also shows a good performance in some lead times of forecast. In particular, HWRF shows the highest performance in predicting the intensity of strong TCs above Category 3, which may be attributed to its highest spatial resolution (~3 km). The Navy Operational Global Prediction Model (NOGAPS) and GFS were the most improved model during 2008~2014. For initial intensity error, two Japanese models, Japan Meteorological Agency Global Spectral Model (JGSM) and TEPS, had the smallest error. In track forecast, the European Centre for Medium-Range Weather Forecasts (ECMWF) and recent GFS model outperformed others. The present results has significant implications for providing basic information for operational forecasters as well as developing ensemble or consensus prediction systems.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics (Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정)

  • Hwang, Yuseon;Kim, Chansoo
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.247-261
    • /
    • 2018
  • The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

Quantitative Analysis for Termites Damage of Wooden Heritage using Ultrasonic Pulse Velocity (초음파 전파속도법을 이용한 목조 문화유산 흰개미 피해의 정량 평가)

  • Ahn, Jae-Cheol
    • Journal of architectural history
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2015
  • Quantitative analysis of termites damage is important in terms of conservation and maintenance of wooden cultural heritage buildings, because termites makes cavities and decreases the section area of wooden structural members. The purpose of this study is to forecast the range and spread of termites damage in the wooden structural members by using ultrasonic pulse velocity method. Ultrasonic pulse velocity has been used as one of non-destructive test to analysis the internal defect by using difference velocity between medium material and cavity. This method would be effective to analysis termites damages. From the result of the ultrasonic velocity test, the loss rate of area effected by termites damage had a strong correlation with ultrasonic velocity. And it is possible to predict the loss rate of area from by termites damage by using regression equation in the case of structural member of fine tree.

Wave Height from Satellite Altimetry and Its Comparison with a Model Product

  • Kim, Seung-Bum;Kang, Sok-Kuh
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • We extracted significant wave height (SWH) using several altimeter missions from 1987-1995 over the Northwest Pacific ocean and compared with ECMWF (European Center for Medium- Range Forecast) reanalysis (ERA) products. For large wave heights the ERA wave heights are smaller than the altimetric ones, while for small wave heights the ERA wave heights are larger Comparison in SWH between altimetric derivations and ERA model products shows the discrepancy of 0.46-0.21$\times$SWH (m). Methods for propagating this differences into ERA wind error are presented.

Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model (WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향)

  • Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.